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Abstract
Atomic stabilization is a highlight of superintense laser–atom physics. A wealth
of information has been gathered on it; established physical concepts have
been revised in the process; points of contention have been debated. Recent
technological breakthroughs are opening exciting perspectives of experimental
study. With this in mind, we present a comprehensive overview of the
phenomenon.

We discuss the two forms of atomic stabilization identified theoretically.
The first one, ‘quasistationary (adiabatic) stabilization’ (QS), refers to the
limiting case of plane-wave monochromatic radiation. QS characterizes the fact
that ionization rates, as calculated from single-state Floquet theory, decrease
with intensity (possibly in an oscillatory manner) at high values of the field.
We present predictions for QS from various forms of Floquet theory: high
frequency (that has led to its discovery and offers the best physical insight),
complex scaling, Sturmian, radiative close coupling and R-matrix. These
predictions all agree quantitatively, and high-accuracy numerical results have
been obtained for hydrogen. Predictions from non-Floquet theories are also
discussed. Thereafter, we analyse the physical origin of QS.

The alternative form of stabilization, ‘dynamic stabilization’ (DS), is
presented next. This expresses the fact that the ionization probability at the
end of a laser pulse of fixed shape and duration does not approach unity as
the peak intensity is increased, but either starts decreasing with the intensity
(possibly in an oscillatory manner), or flattens out at a value smaller than unity.
We review the extensive research done on one-dimensional models, that has
provided valuable insights into the phenomenon; two- and three-dimensional
models are also considered. Full three-dimensional Coulomb calculations have
encountered severe numerical handicaps in the past, and it is only recently
that a comprehensive mapping of DS could be made for hydrogen. An
adiabatic variation of the laser-pulse envelope keeps the system in the Floquet
state associated with the initial state, that allows calculation of the ionization
probability in terms of the corresponding rate. A nonadiabatic variation can
excite other Floquet states, either discrete (‘shake-up’) or continuous (‘shake-
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off’), with considerable consequences for DS. A unitary interpretation of these
aspects of DS is presented in terms of ‘multistate Floquet theory’. We then
comment on the points of contention raised in connection with DS. Further,
we review the extent to which the classical approach has been successful in
describing DS.

We next examine the concern that nonrelativistic (NR) predictions for
stabilization may be inadequate in superintense fields, because relativistic
corrections would invalidate them. It turns out that, although the relativistic
corrections do limit stabilization, there is an ample ‘window’ of intensities for
which the NR predictions remain valid.

Finally, we discuss the experimental evidence in favour of stabilization. For
lack of adequate lasers to study ground states of single-active-electron atoms,
the experiments so far have been performed on low-lying Rydberg states. Two
state-of-the-art experiments have determined ionization yields for pulses with
adiabatic envelopes. Their results concur, are in agreement with the theoretical
predictions and represent a clear-cut confirmation of DS.

Our conclusion is that superintense field stabilization is firmly established,
both theoretically and experimentally. Nevertheless, further research is
desirable to solve interesting open problems, some of which we identify. Their
research is made timely by the superintense high-frequency light sources that are
being developed, such as VUV-FELs, or attosecond pulses from high-harmonic
generation.

1. Introduction

An atom trapped in a superintense laser focus undergoes extreme contortion, which although
ephemeral (subpicosecond duration) lasts long enough to allow for exotic manifestations.
These could not be understood within the traditional perturbative framework, and new
(nonperturbative) ideas had to be introduced. Considerable progress has thus been achieved,
and a new goal for laser research has emerged in the process: instead of studying new behaviour
of unperturbed atoms at low intensities, that of generating new atomic structure by means of
the high intensities. Aside for its fundamental interest, this endeavour has interesting potential
applications.

The exploration of intense laser–atom phenomena has been made possible by spectacular
developments of laser technology. Focused laser pulses can now deliver superintense fields
with peak electric amplitudes of up to 100 au, at wavelengths from the ultraviolet to the
infrared, with high repetition rates. Already, at 1 au, the field amplitude is overwhelming: per
definition, it equals the electric field of the proton on the first Bohr orbit of hydrogen. Pulse
durations in the visible and infrared have now reached the level of several femtoseconds (a
few cycles per pulse). In fact, the generation of superintense fields is coupled to that of short
pulses, a combination that has proven ideal for the study of strong-field phenomena. Novel
developments are actively pursued: high-frequency light sources delivering photons of several
Rydberg energy, and attosecond pulses from high-harmonic generation.

A characteristic manifestation of intense field–atom interactions is multiphoton ionization.
The range of the process has expanded over the years from the absorption of the minimal
number of photons needed for ionization to that of hundreds of extra photons. In-depth
studies of the properties of the ejected electrons (e.g. angular distributions, their response
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to photon polarization) have been carried out. Gradually, interest has expanded from atoms
with one active electron (hydrogen, alkali, noble gas atoms) to include those with two active
electrons (helium, alkaline earth atoms), where the interplay of intense-field effects with
electron correlation raises new problems.

The nonperturbative approach to multiphoton ionization has led to the discovery, a decade
ago, of ‘atomic stabilization’, a fundamentally new concept. Lowest-order perturbation theory
(LOPT) predicts multiphoton ionization rates that are steadily increasing with intensity I : for
n-photon ionization, the rate grows as �n ∼ I n . The growth appears to be quite natural: more
driving force, more response. However, perturbation theory was apt to break down at some
intensity. Whereas LOPT can be extended in principle to include higher-order corrections in
the field, this turns out to be impractical. Direct nonperturbative handling of the Schrödinger
equation is the right way to proceed. This led to a surprise, for it was found that the LOPT-
predicted increase in ionization levels off at some intensity, and the reverse trend may set in:
the higher the intensity, the lower the ionization. This, in general terms, is the stabilization
phenomenon. The notion appeared as ‘counter-intuitive’, and so it is, from the perspective
of perturbation theory. If one realizes, however, the profound changes the atom undergoes at
high intensities, the puzzle disappears.

It should be noted that ‘atomic stabilization’, as described here, is one of several
acceptations of this term. To fully characterize it, it should be qualified as ‘superintense-
field stabilization’. However, even in this context, terminology has been fuzzy at times and,
as ideas progressed, occasionally turned out to be inadequate. We shall use in the following a
terminology consistent with recent findings.

Superintense-field stabilization has emerged from both complementary approaches to the
solution of the time-dependent Schrödinger equation (TDSE): the quasistationary approach
and the wavepacket one. In the first case, wavefunctions are calculated for monochromatic,
constant-amplitude fields, and ionization rates are derived. This has led to ‘quasistationary
stabilization’ (QS), also known as ‘adiabatic stabilization’, which characterizes the globally
decreasing property of the rates with respect to the field amplitude [1]. The second approach is
the standard integration of TDSE to obtain wavepackets evolving from given initial conditions;
it calculates ionization probabilities at the end of a laser pulse, expressing the experimental
ionization yields. Beyond some large peak-field value of the laser pulse, these probabilities
may manifest a behaviour that is globally decreasing, or plateau-like; this has been denoted
‘dynamic stabilization’ (DS) [2]. The connection between QS and DS was rather obscure in the
beginning. It is only more recently that the two aspects could be integrated into a consistent,
unitary picture, and some subtle issues have been clarified. While first discovered in quantum
mechanics, stabilization was thereafter soon found to have a classical counterpart.

Among the numerous theoretical studies on stabilization published, the vast majority has
confirmed the concept and has extended its realm. In recent years, however, criticism has
emerged from two directions: numerical results disagreeing with mainstream calculations,
and mathematical physics results, thought to be at variance with the physical ones. Many
misunderstandings have meanwhile been cleared, leading to a better comprehension of the
phenomenon1.

The quantal description has been based on some general assumptions that we wish to
state beforehand. Firstly, the radiation field is treated classically. This is justified by the fact
that intense laser fields propagate extremely large numbers of photons, on the one hand, and,
on the other, that we are interested here only in the motion of the electrons, rather than the

1 The various points of view on atomic stabilization were presented at a panel discussion at ICOMP 8 (Monterey,
CA, 1999).
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fact that they emit photons. Next, the dynamics are described nonrelativistically using the
Schrödinger equation, because low electron velocities are involved in general. Finally, the
dipole approximation (neglect of wave propagation within the atom) is used for the radiation
field, which is acceptable for optical wavelengths and weakly perturbed atoms. The last two
assumptions become questionable in superintense fields, and relativistic corrections need to
be envisaged.

Computational limitations have been a perennial handicap in the theoretical study of the
realistic three-dimensional (3D) case. In the early days of stabilization, they were quite severe
even for the one-electron problem. This has encouraged studies of one-dimensional (1D)
models, often termed ‘numerical experiments’. Their merit is that, with reduced numerical
gear, it was possible to study a large amount of cases, gaining valuable insight into the physics.
However, quantitatively, their predictions can be misleading. In recent years the numerical
difficulties have lessened, so that a comprehensive mapping of the 3D stabilization of H could
be made.

Notwithstanding the great theoretical interest of stabilization, only two truly strong-field
experiments have been done. Note that experiments in this area are extremely difficult, not to
mention the high-tech equipment needed. These were carried out at FOM Amsterdam [3, 4],on
low-lying Rydberg states, rather than ground states. This is because only for Rydberg states did
the operational parameters of the available intense lasers satisfy the theoretical requirements
for stabilization.

We list some general reviews on strong-field phenomena (in chronological order):
Freeman et al [5, 6], Burnett et al [7], DiMauro and Agostini [8], Protopapas et al [9],
Joachain et al [10]; for recent laser advances, see Brabec and Krausz [11], and also Mourou
et al [12]. Reviews on superintense-field stabilization were presented by Gavrila [13], Eberly
and Kulander [14], Delone and Krainov [15], Muller [16] and Gavrila [17]2. Since these
papers were written, important progress has been made in the quantitative description and
physical understanding of the phenomenon. The goal of the present report is to cover this
progress, while giving a comprehensive and unitary presentation of the physics. Issues related
to ionization of high-lying Rydberg states are not covered here (for the latter, see Delone and
Krainov [15], Lankhuijzen and Noordam [18] and Gallagher [19], and references therein).

The principal topics of our review are QS (section 2), DS (section 3), relativistic effects
(section 4) and experiments (section 5), followed by a conclusion and perspectives (section 6).

We are using atomic units (h̄ = m = |e| = 1, where m and e are the mass and charge of
the electron), unless otherwise stated3.

2. Quasistationary stabilization

2.1. Floquet theories

2.1.1. Preliminaries. Assuming the dipole approximation, the electric field of a
monochromatic plane wave can be written

E(t) = E0(e1 cos ωt + e2 tan δ sin ωt), (1)

where E0 is a real amplitude, e1, e2, are unit vectors orthogonal to each other and to the
propagation direction and δ specifies the polarization; the averaged intensity of the wave is

2 We take the oportunity of correcting two misprints in [17]: in equation (1), φ
(ν)
n (r, t) should read φ

(ν)
n (r), and in

equation (9) there should be a minus sign before the integral under the exponential.
3 The values of some atomic units of interest here are in conventional units: length, 0.529 × 10−8 cm; time,
2.419 × 10−17 s; energy, 27.212 eV; electric field, 5.142 × 109 V cm−1; radiation intensity 3.509 × 1016 W cm−2

(defined as the time-averaged intensity of a linearly polarized field, with electric field amplitude of 1 au).
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I = E2
0/ cos2 δ au. The quiver motion of a classical electron in the laboratory frame, for an

arbitrary field, is given in terms of the vector potential A(t) by

α(t) ≡ 1

c

∫ t

0
A(t ′) dt ′. (2)

For the monochromatic plane wave equation (1) this gives α(t) = (α0/E0)E(t), where
α0 ≡ E0ω

−2 au.
We write for reference TDSE in the velocity gauge (laboratory frame):[

1

2

(
P +

1

c
A(t)

)2

+ V (r)

]
� = i

∂�

∂ t
. (3)

By applying a translation of vector α(t) to the laboratory frame, one passes to the ‘oscillating’
or ‘Kramers–Henneberger’ frame, in which the classical electron is at rest. By also removing
the ‘quiver energy’ term (1/2c2)A2 via a phase factor transformation for convenience in
equation (3), one finds the ‘space-translated’ TDSE:[

1

2
P 2 + V (r + α(t))

]
� = i

∂�

∂ t
. (4)

This contains the original potential V (r) centred on the oscillating point −α(t). It is unitarily
equivalent to equation (3). The natural parameters describing the dynamics of an electron
are now ω and α0 (contained in α(t), see equations (1), (2)), instead of the usual ω and
E0; ω and α0 need to be regarded as independent parameters. Equation (4) was discovered
by Pauli and Fierz [20], extensively used by Kramers (see [21, p 866]) and rediscovered by
Henneberger [22], and also by Faisal [23]4.

Floquet theory5 calculates quasistationary solutions of TDSE for a monochromatic field
equation (1), of the form

ψ(ν)(r,t) = e−iEν t
∑

n

φ(ν)
n (r)e−inωt , (5)

where Eν is the ‘quasienergy’. By requiring that ψ(ν) satisfy TDSE, the Floquet components
φ(ν)

n need to satisfy an infinite set of time-independent coupled differential equations. The
system depends on the version of TDSE used (length or velocity gauge in the laboratory
frame; space translated). Boundary conditions need to be imposed on the φ(ν)

n to ensure the
uniqueness of the solution. To study ionization, these are mostly chosen of the Gamow–
Siegert (‘resonance-state’) type, which leads to an eigenvalue problem with the quasienergy
Eν as eigenvalue. Because of the nature of these boundary conditions, Eν is complex:
Eν ≡ Wν − (i/2)�ν . On the basis of qualitative arguments, the state ν is interpreted as
representing an ionization mode of the atom, Wν being the average energy in the field (modulo
ω), and �ν its ionization rate. The lifetime of the state is τ = 1/�, in au. At vanishing field
amplitude E0, the Floquet system reduces to the unperturbed time-independent Schrödinger
equation. Only one of the components φ(ν)

n survives, reducing to the unperturbed energy
eigenfunction uν , while Eν goes over into the corresponding field-free energy W (0)

ν .
Floquet theory based on using a single state equation (5), ‘single-state Floquet theory’,

is the customary form of the theory, and will serve as a basis for discussion in this section.
Although it has met with considerable success in describing multiphoton ionization, it has
limitations stemming primarily from the fact that Floquet states are not square-integrable
4 The quantized-field version of this equation, as used by Pauli and Fierz [20] and Kramers [21], has played a historical
role in the development of the renormalization program of QED (see [24, chapter 7.4]).
5 For various aspects of Floquet theory see Manakov et al [25], Chu [26], Potvliege and Shakeshaft [27], Burke et al
[28], Joachain et al [10], Gavrila [13] and Moiseyev [29].
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in the quantum mechanical sense, because of the Gamow–Siegert boundary conditions they
satisfy. Moreover, Floquet solutions and their quasienergies imply constant field amplitude
E0, whereas intense laser fields are produced in the form of pulses. The issue is then how one
can use single-state Floquet theory to describe physical reality. It turns out that this is possible
for pulses with adiabatically varying envelopes E0(t), if the Floquet solution is known at all
instantaneous values of the amplitude E0(t)during the pulse (and therefore the time dependence
of the quasienergy Eν[E0(t)]). For arbitrary pulses, superpositions of Floquet states need to
be considered. These issues will be discussed in section 3.2.

Concerning the practical determination of Floquet states, a variety of methods has been
applied successfully: complex scaling (or complex coordinate rotation), Sturmian basis
expansion, radiative close coupling, R-matrix Floquet (see, e.g., [9]). However, the physics
of stabilization derives naturally from the ‘high-frequency Floquet theory’ (HFFT), which has
also made the discovery of the phenomenon possible.

2.1.2. High-frequency Floquet theory. HFFT is a general framework for treating laser–
atom interactions at high frequencies and all intensities (see Gavrila and Kaminski [30], for
an overview see [13]), which proceeds from the space-translated Schrödinger equation (4).
HFFT solves the corresponding Floquet system of equations at large ω by successive iterations
of increasing order in ω−1 [13]. To lowest order in ω−1 (the high-frequency limit) and at fixed
α0, the HFFT Floquet system reduces to a single equation, the ‘structure equation’:

[ 1
2P 2 + V0(α0, r)]vν = Wνvν, (6)

and the Floquet state ψ(ν)(r,t; E0, ω) of equation (1) reduces to ψ(ν) � e−iWν t vν(r).
Equation (6) has the form of a usual energy-eigenvalue Schrödinger equation containing the
‘dressed potential’ V0(α0, r), defined as the time average of the oscillating potential:

V0(α0, r) ≡ 1

T

∫ T

o
V (r + α(t)) dt, (7)

where T = 2π/ω. Thus, in the high-frequency limit the quasienergies are real, lim Re Eν =Wν

and lim �ν = 0, which means that ionization is frozen. Moreover, the equation contains only
α0 (but not ω), and hence Wν = Wν(α0). The vν(r; α0) will be referred to as ‘dressed
eigenfunctions’.

The structure equation (equation (6)) was first obtained heuristically by Henneberger [22],
but its high-frequency character was recognized only later by Gersten and Mittleman [31];
ionization, and hence QS, were not considered in these papers. In the context of HFFT,
equation (6) was first derived for radiation-assisted scattering [30].

The occurrence of V0 in equation (6) appears natural if one notes that the nucleus has
an oscillatory motion of trajectory −α(t) in the oscillating frame. As ω is supposed large,
the electron will not react to the rapid oscillations of the nuclear potential, but rather to its
time average V0 (see [13, section IV C]). Equivalently, equation (7) can be expressed as a line
integral along the ellipse −α(t), with variable charge density (higher at the points where the
motion is slower), so that V0 can be regarded as the electrostatic potential obtained by smearing
out the nuclear charge along its trajectory. This ‘line of charge’ reduces to a segment of length
2α0 for linear polarization (with higher density towards its end points ±α0e, where e is the
polarization vector), or a circle of radius α0 in the polarization plane, for circular polarization
(with constant charge density) (see [13, section IV C]). As opposed to the original Coulomb
potential, the dressed potential has in general only a logarithmic singularity along the line of
charge. For linear polarization, however, it has extra square-root singularities at the end points
±α0e. A graphical representation of the dressed potential for the linear case was given by
Gavrila and Kaminski [30, figure 1], and for the circular case by Pont [32, figure 1].
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The first iteration within the HFFT allows for ionization. For the partial n-photon
ionization rates this gives [33]

d�n

d�
= kn| fn(k̂)|2, fn(k̂) ≡ − 1

2π
〈v(−)

kn
|Vn|v0〉, (8)

where we have dropped the state label ν. Here kn is the final momentum of the electron
[kn ≡ knk̂; (k2

n/2) = Wµ + nω] and v0, v
(−)
kn

, are respectively the initial and final dressed
states of the electron, adequately normalized (v0 having normalization integral equal to unity,
and v

(−)
kn

having asymptotic amplitude unity). Angular integration of equation (8) gives the
n-photon ionization rate �n , and � is obtained from � = ∑

n �n . The rates depend on both ω

and α0 (or E0). The first iteration also yields a correction to the real part of the quasienergy,
i.e. a correction of O(1/ω) to the dressed energy levels Wν of equation (6), which substantially
improves the agreement with the the exact Floquet value (see Marinescu and Gavrila [34]).
Explicit formulae for the second iteration were given by Wells et al [35]. In the following, we
shall limit ourselves to results from the first iteration.

A pragmatic convergence criterion for the HFFT iteration scheme was shown to be the
high-frequency condition [13]:

ω � Wexc(α0), (9)

where Wexc(α0) is an average excitation energy for the manifold of the initial state v0. For
linear and circular polarizations, the manifolds are characterized by parity, and the magnetic
quantum number m. Most often, Wexc(α0) is of the order of magnitude of the largest binding
energy of the manifold. Equation (9) requires that at least one-photon ionization be possible.
Equation (9) is a sufficient condition, and HFFT results may apply even when it is not satisfied.
There are no restrictions on α0 in HFFT6. Mathematical aspects of HFFT were discussed by
Martin and Sassoli de Bianchi [36].

The structure equation (6) was first solved for the case of hydrogen, and posed a numerical
challenge because of its nonseparable character. A variety of methods have been applied, with
the result that the eigenvalues and eigenfunctions of H and other simple systems (H−, H+

2 ) are
known to a high degree of accuracy (see Pont et al [37, 38] and Pont [32], and also [13])7.
We display in figure 1 W (α0) for the ground state of H as a function of I 1/2ω−2 au, cases
of linear and circular polarizations. (Note that, when α0 is expressed in terms of I , we have
α

(lin)

0 = I 1/2ω−2 and α
(circ)
0 = (I/2)1/2ω−2 au.) The figure shows that, if the high-frequency

condition (9) is satisfied at all intensities, the binding energy of the atomic ground state in the
field decreases steadily to zero. Coupled to this decrease are peculiar changes in the atomic
structure. For linear polarization the electronic cloud elongates and undergoes ‘dichotomy’
into two nonoverlapping lobes, localized around the end points ±α0e of the line of charge [37,
figure 1], [38, figures 5, 6], [13, section VB and figures 4, 5]. For circular polarization, the
cloud concentrates in a torus around the circle of charge of radius α0 (‘toroidal shaping’) [32],
[13, section VB and figure 6]. Note that these structural changes occur in the oscillating frame,
and are perceived differently in the laboratory frame.

Solutions of the structure equation (equation (6)) have since also been derived for 1D
systems with various short-range potentials, which are easier to handle numerically than

6 The condition α2
0ω � 1, mentioned by Gavrila and Kaminski [30], and reproduced in the reviews [7, 9, equation

(8.5)], has turned out to be superfluous.
7 The numerical methods applied were diagonalization in multicentre Gaussian basis sets (Pont et al [37, 38]), two
independent finite element programs (Vos and Gavrila [39], Shertzer et al [40]) and diagonalization in a Slater-type
basis set in spheroidal coordinates (Muller and Gavrila [41]). More recently, Lefebvre and collaborators have shown
that it is possible to solve equation (6) to good accuracy, by applying efficient quantum chemistry codes, such as
HONDO 95.6 (see Perez et al [42]).
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Figure 1. Ground-state energy of the H atom in high-frequency laser fields (linear and circular
polarizations) versus α0 = I 1/2ω−2 (in au), according to the HFFT (from Pont et al [38] and Vos
and Gavrila (unpublished)).

Coulomb-tail potentials. The case of the attractive Gaussian potential was worked out by
Bardsley and Comella [43], Yao and Chu [44] and Marinescu and Gavrila [34]. The ‘zero-
range’ potential V (x) = −Bδ(x) was treated partly analytically by Grozdanov et al [45]; see
also Sanpera et al [46]. A characteristic of short-range 1D potentials (with a finite number
of field-free bound states) is that the system acquires additional bound states as the field
increases. These have been designated ‘light-induced states’ (LIS), and exist also for the full
Floquet differential system. For the structure equation (equation (6)), as α0 varies, new LIS
bound states materialize from resonance states. This was illustrated by Boca et al [47] for the
δ(x) potential. There is a substantial difference between the 1D and 3D cases concerning LIS
for short-range potentials, as discussed by Potvliege [48]: pending reasonable conditions on
the potential, in the 1D case the number of LIS increases indefinitely for α0 → ∞, whereas
in the 3D case it tends to zero8,9.

Solutions of the structure equation (equation (6)) for 1D long-range potential models have
also been derived, especially for the ‘soft-core Coulomb’ potential (see section 3.1.1).

The fact that Floquet quasienergies should depend only on α0 in the high-frequency limit
appeared to be puzzling at first, but was soon confirmed by full Floquet computations. Bardsley
and Comella [43] have shown, using their Gauss-potential 1D model, the progressive approach
of Re E(α0, ω) towards the HFFT value W (α0) as ω increases; see also Ben-Tal et al [49]. A
detailed comparison of full Floquet calculations with the complete form of the first iteration
of HFFT was carried out by Marinescu and Gavrila [34] for the same Gauss potential. For
H, the approach of Re E(α0, ω) towards W (α0) was confirmed by Dörr et al [50, 27] (see
also section 2.1.2). The behaviour of Floquet functions, at high and low frequencies, was
compared during a light period, by Wiedemann [51] for a 1D ‘soft-core’ Coulomb potential,

8 For more information on LIS, see also Fearnside et al [52], and references therein. Their physical reality was
ascertained on the basis of TDSE wavepacket calculations by Wells et al [53].
9 Interest in 3D short-range potential models stems from the fact that they give an adequate representation for the
behaviour of negative ions (like H−) at low intensities. However, it follows from [64, 41, 65] that at high intensities,
one-particle models for the description of H− completely break down (see also the end of section 2.1.2), and a two-
particle description is needed. As an illustration, we recall that H− acquires an increasing number of bound states in
superintense fields [64, 41], whereas the models tend to lose all their bound states [48].
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Vs(x) = −(1 + x2)−1/2: in the former case the modulus of the function is nearly constant in
time, as predicted by HFFT, whereas in the latter case it undergoes strong oscillations.

The calculation of rates for H according to equation (8) was done by Pont and Gavrila [1]
(see also [13, section VI]). Beside the ground-state wavefunction v0 one needs the continuum
function v

(−)
kn

. The simplest approximation for the latter is the Born approximation (replacement

of v
(−)
kn

by a plane wave). This greatly simplifies the calculation and allows for the derivation
of analytic formulae capable of illustrating the physical trends. On the other hand, it limits the
validity of the results to larger values of ω than those required by the high-frequency condition
of the theory (see [34]).

For circular polarization, the results can be obtained analytically, and for the ground state
of H we find

d�n

d�
� 4

k3
n

[v(c)
0 ]2 J 2

n (α0kn sin θ), �n � 8π

α0k4
n

[v(c)
0 ]2

∫ 2α0kn

0
J2n(ξ) dξ. (10)

Here, Jn is a Bessel function, θ is the angle of kn with the propagation direction of the field
and v

(c)
0 is the constant value (due to cylindrical symmetry) of the ground-state wavefunction

v0 on the ‘circle of charge’.
At low intensities (small α0) equation (10) gives �1 ∼ I , with an ω dependence of ω−9/2;

this is a well known result from LOPT at high frequencies. Moreover, as �n ∼ I n , to lowest
order in the intensity only �1 contributes to the total rate �: � � �1 ∼ I .

For intense, nonpertutbative fields (α0kn � 1), �n of equation (10) can be summed
analytically over n. If also α0 � 1, one finds that v

(c)
0 � (0.147/α0), which yields the

dominant behaviour:

� � 0.223

α3
0 ω2

= 0.631
ω4

I 3/2
, (α0 � 1). (11)

This equation exhibits the ‘QS’ phenomenon: at fixed ω the total ionization rate decreases
with I ; at fixed I , � increases with ω. An alternative designation is ‘adiabatic stabilization’10.
More generally, we shall define QS, allowing for an overall decreasing behaviour of � at high
intensities (not necessarily monotonic).

QS exists also for general elliptic polarization. For linear polarization, the dominant
high-frequency behaviour at large α0 was derived by Pont and Gavrila (see [13, section VI.2]):

� � ω2

I

(
0.007 46 ln

I

ω
+ 0.285

)
, (α0 � 1). (12)

This approximates the accurate Floquet results of [50, figure 3] to better than 20% at α0 > 1.
On the other hand, equation (11) is considerably less accurate, which indicates a larger
magnitude of the neglected terms (see [50, figure 5]).

The intensity dependence of the lifetime τ of H for circular polarization, as computed from
equation (10), is shown in figure 2 at various ω. For the larger ω (1 � ω � 8), condition (9)
is (approximately) satisfied, so that it is meaningful to follow the HFFT lifetimes from small
intensities to superintensities. In the log–log plot shown, a lifetime curve has three branches:
a linearly descending branch at low intensities (slope approximately minus one) representing
LOPT, followed by an intermediate branch with a minimum and then by the quasi-linearly
ascending QS branch (slope roughly 3/2, see equation (11)). At very high α0, the results
shown will be affected by as yet unknown relativistic corrections. The vague oscillatory
10 ‘Adiabatic stabilization’ is a term introduced early on (1993) to characterize the fact that one is dealing with the
stabilization of rates � derived from Floquet theory, the practical realization of which implies adiabaticity. However,
to avoid confusion with dynamical stabilization of the ionization probability Pion occurring under adiabatic conditions
of variation of the pulse envelope (see section 3.2), we henceforth give preference to the term ‘QS’.
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Figure 2. Lifetime of the H atom in the ground state according to the HFFT, versus intensity,
at various ω (in au); circular polarization. Numbers adjacent to points on the curves are the
corresponding values of α0. The descending branches of the curves correspond to LOPT, the
ascending ones to QS (from Pont and Gavrila [1]).

behaviour of the stabilization branches in figure 2 can be traced back to the Bessel function
oscillations of (d�n/d�), equation (10). However, these oscillations practically wash out,
when integrating over the angles and summing over n, to calculate the total rate �.

Also included in figure 2 are three τ curves at lower ω (ω = 0.125, 0.25, 0.5), which have
not been continued towards small intensities. This is because the high-frequency condition (9)
is violated at small intensities, where the binding energy is approximately 0.5, and therefore
the ground-state solution of equation (6) cannot be considered physical. Nevertheless, due to
the decrease in the binding energy (and of Eexc) illustrated in figure 1, at sufficiently high I ,
the high-frequency condition ends up by being satisfied. When this happens, the ground-state
solution becomes physical according to the HFFT, and the curves in figure 1 do represent its
lifetimes. This is an example of LIS, states generated by the radiation field.

Lefebvre et al [54] have carried out a computation of the ionization rates according to
equation (8), without making the Born approximation for the final state v

(−)
kn

(but still not fully
accurate, however). This improves substantially the agreement of equation (8) at α0 < 1 with
the accurate Floquet computations by Dörr et al [50, 55] (see section 2.1.3). The fact was
confirmed subsequently by Lefebvre and Stern [56]. The same conclusion was drawn from
the 1D model calculation in [34].

It was recognized from the very beginning of QS studies that the experimental means to
demonstrate its existence for the ground state of atomic H were not available (lack of high-
frequency lasers and the required intensities). Besides, the laser pulses need to be sufficiently
short, otherwise the atom would not be able to survive the rising edge of the pulse in a neutral
state, and enter the stabilization regime: it would ionize while crossing the valley-shaped
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branch of its lifetime curve in figure 2, which acts like a ‘death valley’ (see section 3.111).
Nevertheless, it was realized by Vos and Gavrila [39] that it should be possible to detect QS
with the existing experimental means for Rydberg states.

The advantage of considering Rydberg states is that, even for small ω, by choosing a
sufficiently high-lying state, its binding energy will be smaller than ω, so that condition (9)
would appear to be satisfied. The difficulty is that there could be lower-lying states coupled to
the initial state, leading in fact to a Wexc larger than ω. The way out proposed in [39] was to
use a linearly polarized field, since the HFFT states can now be grouped into noninteracting
manifolds characterized by the magnetic quantum number m with respect to the field axis (the
strict selection rule �m = 0 holds). Thus, equation (9) can be written as ω � W (m)

exc , where
W (m)

exc is the average excitation energy for the manifold of the initial state, and is of the order of
magnitude of the excitation energy of its lowest state. The lowest state of quantum number m is a
‘circular state’ with |m| = l = n−1; its field-free binding energy is W (m)(0) = 2−1(|m|+1)−2.
By choosing m high enough, W (m)

exc � W (m)(0) can be made small with respect to any of the
frequencies ω of available intense lasers. As it turns out that for α0 > 0, W (m)(α0) < W (m)(0)

(see [39, figure 1], or [13, figure 3]), the high-frequency condition is even better satisfied as
the intensity increases. Besides, a H-atom calculation will suffice, as high atomic states are
essentially hydrogenic. Similar ideas were advanced by Pont and Shakeshaft [59].

The calculation in [39] focused on the two lowest-lying dressed states of the |m| = 5
manifold. The odd state of the manifold goes over in the field-free limit into n = 6,
l = 5, whereas the even state goes into n = 7, l = 6. The eigenfunctions were
calculated quite accurately first, using equation (6); very good agreement with these results
was found later in [60]. Ionization was then calculated at ω = 1.17 eV = 0.0428 au, and
ω = 2.0 eV = 0.0735 au (the latter photon energy being that of the experiments described in
section 4), both satisfying the condition ω � W (m)

exc . The two curves obtained for the lifetimes
τ are similar in shape to those in figure 2 for the ground state, with the essential difference
that for the circular Rydberg states the minimal lifetimes exceeded by far the duration of
the intense short laser pulses available at that time (some 100 fs), and hence ‘death valley’
was no longer lethal for the neutral atom. It was concluded (1992) that all conditions were
satisfied in the cases considered to be able to detect QS with the available technological means.
Moreover, it turned out that, due to the Born approximation made for the final dressed state,
the lifetimes were severely underestimated, so that the situation was even more favourable for
an experiment. This was shown by Potvliege and Smith [61] and Baik et al [60] (see further,
sections 2.1.3 and 2.2).

There are also other differences between QS for Rydberg states and the ground state:
the onset of QS occurs for the Rydberg states at lower intensities (below 0.1 au), and the
stabilization branch increases more steeply with I . Moreover, the total lifetime for high-
m states of principal quantum number n is determined entirely by one-photon ionization,
i.e. � � �1, for it was predicted in [39] to be �n ∼ n−|m|−2(n � 1). This means that
practically only one-photon ionization occurs, and that there is only one peak in the electron
spectrum.

Let us now address the natural question what is the physical origin of QS? Several, not
so obviously equivalent, interpretations have been advanced (e.g. Pont and Shakeshaft [59],
Potvliege and Smith [61] and Scrinzi et al [62]). These have led to the conclusion that the
value for the onset of QS is α

(m)

0 ∼ ω−1/2. We present here the interpretation emerging from
our HFFT formulae.

11 The fact that atoms would not survive in a neutral state to feel the peak intensities of picosecond pulses was
emphasized much earlier by Lambropoulos [58].



R158 Topical Review

Recall that ionization is described quantum mechanically by de Broglie probability waves
emitted by the oscillating electron in the presence of the nucleus. In the oscillating frame
of reference, it is the nucleus that moves along the trajectory −α(t). Let us consider the
asymptotic form of the Floquet component φ n(r), describing n-photon ionization, in the Born
approximation:

φn(r)v→∞ → fneikn r

r
� −(2π)2V (kn)

1

T

∫ T

0
einωt eikn |r+α(t)|

|r + α(t)|v0[−α(t)] dt . (13)

Here, V (k) is the Fourier transform of the field-free potential V (r), and v0[−α(t)] is the
initial dressed eigenfunction at the trajectory of the nucleus12. Equation (13) contains two
independent parameters, α0 and α0kn ∼ α0ω

1/2. The emitted wave φn(r) appears as a
superposition of instantaneous emissions taking place at each point of the trajectory, weighted
by the local magnitude of the electronic wavefunction v0[−α(t)]. The total emission in
a given direction will be subject to interference. The elements controlling ionization are
thus de Broglie interference and the amount of electronic presence along the path of the
nucleus, v0[−α(t)]. If the linear size of the trajectory (of order α0) is smaller than the emitted
wavelength, i.e. α0kn � 1, there can be only constructive interference. Since this implies small
α0, and v0[−α(t)] is then nearly constant (it has approximately the value of the unperturbed
eigenfunction at the origin u(0)), | fn| will increase with α0. This trend is stopped by two
causes. (a) Destructive interference occurring when the emitted wavelength becomes smaller
than the linear size of the trajectory, i.e. α0kn > 1. This decrease leads to an interference
minimum which, as in optics, will be followed by a maximum, and so on; the amplitudes of
the successive maxima decrease, however, with their order, and hence with α0. (b) Weakening
of the electronic weight function v0[−α(t)]. This is a consequence of the fact that the dressed
potential becomes progressively weaker as α0 increases (for details see [13]), which makes
the eigenfunction expand, and v0[−α(t)] be a decreasing function of α0. The decrease with
α0 of | fn|, occurring in all directions, leads to a decrease of the angle-integrated �n for all n,
and of their sum �. (In fact, at high frequencies, the dominant contribution comes from �1 at
all α0.) Causes (a) and (b) are both responsible for QS, and neither of them can be considered
separately. Whereas (b) has a classical analogue, (a) does not (see section 3.4).

The effects of the two causes can be simply illustrated for circular polarization. In this
case, v0[−α(t)] ≡ v

(c)
0 is constant along the circle of charge, and factors out of the integral

in equation (13). The latter then yields a Bessel function (see equation (10)), with asymptotic
amplitude ∼α

−1/2
0 ; this is responsible for the interference phenomenon. On the other hand,

v
(c)
0 is a decreasing function at all α0 (at large α0, v

(c)
0 ∼ α−1

0 ), which is a consequence
of the expansion of the wavefunction with α0. In the expression of �n , equation (10), at
larger α0 (in the QS range), [v(c)

0 ]2 contributes a factor α−2
0 , whereas the square of the Bessel

function contributes a factor α−1
0 . Were v[−α(t)] in equation (13) to be constant, all �n and

� would be functions of α0ω
1/2 only, and the onset of QS would occur at some α

(m)

0 such that
α

(m)

0 ω1/2 = constant, as predicted in [61]. The fact that cause (b) is also operative makes the
onset of QS depend also on α0; this lowers the value of13 α

(m)
0 .

12 Equation (13) originates in equation (82) of [13], with ν = 1 (first iteration). The latter equation contains �
(1)
n = Vn

(see equations (72) and (73)); further, for consistency to first order, we set φ
(1)
0 � φ

(0)
0 = v0, G(E(1)

n ) � G(+)(Wn)

(see [13, p 465]). For G(+)(Wn) we then take the Born approximation, and use for Vn its defining Fourier integral.
This leads to our equation (13), if the slowly varying function v0[r − α(t)] is handled as described in [13, p 489].
Note that fn resulting from equation (13) is consistent with the Born approximation of fn in equation (8).
13 Note that QS is not due to the ‘dichotomy’ (for linear polarization), or the ‘toroidal shaping’ (for circular polarization)
of the electronic cloud, as was sometimes stated, because these effects appear for ground-state H at much larger α0
(e.g. α0 � 30) than the onset of stabilization (α0 ≈ 1).
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Equation (13) is a useful approximation as long as v0[−α(t)] is nonvanishing. For linear
polarization, the line of charge is located on the field axis, and v0 is nonvanishing only if it
belongs to the m = 0 manifold (containing the ground state); v0 vanishes on the field axis for
states with m �= 0. In this case the interpretation of QS cannot be based on equation (13).
Nevertheless, we have given a generalization of equation (13) to the case m �= 0, which has
a similar form, except that V (kn) is replaced by a derivative with respect to the momentum
variables kn , and v0 by a spatial derivative at points located on the line of charge. This allows
the interpretation of QS to be carried out as for m = 0 states.

We have dealt so far with HFFT for one-electron atoms. The theory has been generalized,
however, to several-particle HFFT, and applied to two-electron atoms, simple molecules and
exotic systems. For two-electron atoms, one obtains the space-translated Schrödinger equation
by translation of the coordinates of each electron by α(t), equation (2). Note that the Coulomb
repulsion energy retains its form. Subsequent application of the high-frequency iteration
procedure leads to the following structure equation:[

1

2
(P 2

1 + P 2
2 ) + V0(α0, r1) + V0(α0, r2) +

1

|r1 − r2|
]
vν = Wµvν, (14)

and to a generalization of equation (8) for the differential single-electron ionization rates
(see [64]). Equation (14) treats the two electrons on the same footing. Consequently, it is
natural that the validity condition be given by equation (9), where now Wexc is the average
excitation energy for the whole system. At small intensity, Wexc can be relatively high (e.g.,
for H− it is of the order of the binding energy for H), but at high intensity this can be very
much reduced (see [63, 64]). We recall that equation (9) is a sufficiency condition.

Equation (14) was applied to the calculation of the structure of H−, with full account of
electron correlation, by Muller and Gavrila [41]. Whereas in the field-free case H− has only
one bound state, at increasing intensities it acquires a large (probably infinite) set of LIS. The
large-α0 behaviour of the system was investigated by Mittleman [63] for the ground state, and
by Gavrila and Shertzer [64] for all states. It was found that the total binding energy of H−
becomes twice that of H [63], and that, of the large number of LIS that appear, some are doubly
excited but not subject to autodetachment [64]. QS was confirmed only at large α0 [64]. Using
the Born approximation, it was found that, in the dichotomy regime, the H− ionization rate is
essentially twice that of H. In fact, QS is expected to set in at much smaller α0, but the issue
was not investigated quantitatively.

Exotic atomic structures have been predicted at large α0, from the several-electron form
of equation (14), by van Duijn et al [65] and van Duijn and Muller [66]. For example, it was
shown that a proton can bind three or more electrons (i.e., multiple negative ions of H can exist)
in monochromatic, or specially chosen bichromatic high-frequency fields, a fact not possible
in the field-free case. The production of H2− (one proton plus three electrons) should be
within experimental reach. As, at large α0, the electrons involved are practically independent
dynamically, the single-electron decay rates of these systems are proportional to the
corresponding hydrogen decay rates, and the ions are in the QS regime already at appearance.

2.1.3. Other Floquet theories. QS has been confirmed for the ground state and the excited
states of H, in fields of linear or circular polarization, by all other Floquet theories: Sturmian,
radiative close coupling, R-matrix Floquet and complex scaling. The Floquet differential
systems solved derive either from the Schrödinger equation in the laboratory frame, or from its
space-translated version. These theories obtain directly the complex quasienergies, and hence
the average atomic energy W (modulo ω) and the total �. The latter depend in general both
on α0 and ω. Extra effort is needed to determine the partial rates �n .
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Explicit Floquet results forW (α0, ω) at finite ω were reported for the case of H only
by Dörr et al [50, figure 1], see also [27, figure 18], at a number of frequencies, for linear
and circular polarizations. In both cases the field-dependent Stark shift for the ground state is
positive and increases (i.e., the binding energy decreases), as predicted by HFFT (see figure 1).
By increasing ω, one could follow the approach of W (α0, ω) towards the HFFT value W (α0)

in figure 1. For both polarizations, at lower α0, we have W (α0, ω) < W (α0), whereas at
higher α0, W (α0, ω) > W (α0). For α0 � 4.5 the agreement with W (α0) becomes close at all
frequencies ω > 0.51.

The results for � in the QS regime are as follows.
Sturmian theory [27, 67]. Dörr et al [50] have obtained accurate results for QS of the 1s

and 2s states of H, for linear and circular polarizations, with ω in the range 0.51 < ω < 2.
The Floquet system solved was that corresponding to the Schrödinger equation in the velocity
gauge. � curves were obtained as functions of α0. For the 1s state, �1s starts from zero at
α0 = 0, passes a maximum (corresponding to the bottom of the ‘death valley’ for the lifetime)
and decreases thereafter to zero (QS regime). QS is present already at ω as low as 0.51, and at
fixed α0 the values of �1s decrease with increasing ω, as expected from HFFT. Up to some α0

in the range 2–4, �circ
1s > �lin

1s , but thereafter the situation is reversed, in agreement with the
high-α0 HFFT predictions (see equations (11) and (12)). A similar behaviour of the � curves
was found for the 2s state at various frequencies. At given ω, �2s is about one-tenth of �1s.
Note that QS was found to exist even at ω = 0.17 and 0.25, energies that do not satisfy the
high-frequency condition (9). This indicates that condition (9) is sufficient, but not necessary.

Potvliege and Smith [61] have applied Sturmian theory to Rydberg states of high m
quantum number, for several wavelengths ranging from the visible to the infrared, and linear
polarization. QS was demonstrated in all cases, and a table was made of intensities for the
onset of QS in these states, and the corresponding values of the lifetimes. A comparison with
the results of Vos and Gavrila [39] showed that, although the � curves had similar shapes, there
were large discrepancies in their magnitudes (due to the use of the Born approximation in [39]).
Potvliege [68] has also considered QS for Rydberg states in a two-colour field, consisting of
a superposition of the first and second harmonic of ω = 2 eV with variable amplitude ratio
and phase difference (linear polarization). The presence of the second harmonic affects QS
significantly only at very high amplitude ratio, contrary to what happens in the 1D case [57].

R-matrix Floquet theory [10, 28, 69] solves for each problem the Floquet system in
different gauges, depending on the region of configuration space considered, and then connects
the solutions at the boundaries. Intended for several-electron atoms, it was applied to hydrogen
as a test case by Dörr et al [55] (1s and 2s states, linear polarization). The ω chosen for the 1s
state (ω = 0.65) was (marginally) a high frequency in the sense of equation (9); that for the 2s
case (ω = 0.184) was a low frequency. QS was found in both cases, in excellent agreement
with the Sturmian results of [50]. Partial rates have also been obtained.

Radiative close-coupling theory in the angular momentum basis [70, 71] was applied
by Dimou and Faisal [72] to solve the Floquet system corresponding to the space-translated
Schrödinger equation (equation (4)) and circular polarization. QS for the 1s and 2s states of
H was confirmed, the results being in good agreement with those of the Sturmian theory [50]
for the 1s state; for the 2s state they were calculated at different frequencies. A subsequent
paper [73] treated the case of Rydberg states and linear polarization, at frequencies satisfying
the high-frequency condition (9). A table of critical intensities for the onset of QS, together
with the corresponding values of �, was presented for several states. In general, the results
were in good agreement with those of [61].

Marte and Zoller [74] have solved the radiative close-coupling equations to obtain the
scattering matrix S(E) at positive energy, and parametrized it with the help of the multichannel
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quantum defect theory (MQDT). This makes the analytic continuation of S(E) possible below
the nω thresholds, where its poles, representing the quasienergies of the resonances, can be
determined. � obtained for the 1s state at one ω was in fair agreement with [50].

More recently, Lefebvre and Stern [56] have applied the radiative close-coupling method
using exterior scaling for the solution of the radial differential equations. The Floquet system
solved was that corresponding to equation (4). The � obtained for the 1s state at ω = 5, 10,
20, 50 manifests QS in all cases, as well as the partial rates �n . As ω increases, �1 approaches
�, as predicted by HFFT (since �n ∼ 1/n2).

Complex scaling theory [26, 29]. The Floquet Hamiltonian was chosen either in laboratory
frame forms (in the coordinate,or momentum representations),or in the oscillating frame form.
Early 1D calculations are those by Bardsley and Comella (see [43], and references therein),
and Yao and Chu [44]. The latter have shown that, for the Gauss-potential model considered,
� is not a monotonically decreasing function of the intensity in the stabilization regime, but
presents oscillations described by Bessel functions. This was confirmed by subsequent 1D
calculations [75, 76, 34], etc. As noted above, this type of behaviour also occurs for the
differential angular rate of H (see e.g. equation (10)), but there it gets washed out by the
integration over the angles, when obtaining �.

For H, Zakrzewski and Delande [77] have determined the quasienergies of the 2p,
m = 0,±1 states in circularly polarized light with ω = 0.25, in order to study the connection
of QS and DS (see the discussion in section 3.2). Buchleitner and Delande [78] have discussed
the ionization and stabilization of high-lying Rydberg states, the emphasis lying on behaviour
in microwave fields. Their method is equivalent to the Sturmian method of Dörr et al [50],
with which it gave good agreement. Scrinzi et al [62] have also focused on higher Rydberg
states with l = 0, m = 0 (linear polarization). The ω chosen were in some cases larger than
the initial binding energies of the Rydberg states considered, but they did not satisfy the high-
frequency condition (9), as ω was small in comparison with the average excitation energy of
the m = 0 manifold, which is W (0)

exc � 0.5 (see the discussion in section 2.1.2 in connection
with W (m)

exc ). Nevertheless, their � curves did exhibit QS regimes, in some cases � having a
single maximum, like that of the ground state (see their figure 1), in other cases having several
maxima (their figure 4).

To conclude our survey of Floquet results for �, we note that the values for H agree
rather well with each other, and in some cases excellently, which is quite gratifying in view of
the diversity of the methods used. In comparison with the HFFT results, numerical Floquet
theories can claim greater accuracy,because they integrate the exact form of the Floquet system,
and hence are equivalent to including higher-order corrections in ω−1 to the HFFT equations
we have used. Besides, no approximation is made concerning the ionized electron. It has
also emerged that QS can exist, even when the high-frequency condition (9) is not satisfied,
although the circumstances under which this happens have not been investigated.

2.2. Non-Floquet theories

Quasienergies can be obtained by a variety of methods, without solving the Floquet system of
differential equations. We are presenting some that have been used in the study stabilization.

We consider first the case of 3D models with ‘zero-range potentials’, potentials acting over
an infinitesimal range around a centre that have been applied to the description of negative
ions. These remarkable models can be solved analytically at all field strengths. They have been
considered in various forms, depending on the way the coupling to the field was introduced.
One choice is the ‘δ(r) potential’ model, with V (r) = Cδ(r)∂(r . . .)/∂r , coupled to a
monochromatic circularly polarized plane wave. It was solved by Berson [79] and Manakov
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and Rapoport [80] using the Green function (see also Faisal et al [81], Krstic et al [82], and, for
linear polarization, Filipowicz et al [83]). Quasienergies are determined from a complicated
transcendental equation, and the differential n-photon ionization rates can be obtained
independently in terms of Bessel functions. The evaluation of � (from the transcendental
equation, or from summation of the n-photon rates) is a delicate mathematical and numerical
issue, and has led to contradictory statements on stabilization. Thus, LaGattuta [84] obtained
numerical results for � based on S-matrix theory, showing QS in the range of ω and E0

considered. Krainov and Preobrazhenskii [85], on the other hand, asserted the total absence
of stabilization, but Manakov et al [86] disputed their result, finding numerically that � did
decrease up to a certain field, increasing thereafter. Kaminski [87] proved the inexistence
of stabilization within the HFFT at asymptotically high intensities. He also discussed the
difference in behaviour of 3D and 1D zero-range models, since the latter does exhibit
stabilization, as shown in section 2.1.2. Although mathematically interesting, zero-range
potentials are artificial constructions, that do not shed light on the stabilization of systems with
usual potentials. Besides, being one-particle models, they are unrepresentative for negative
ions at high intensities (see section 2.1.2 and footnote 9).

A method based on analytic continuation in the field amplitude E0 was devised by
Baik et al [60]. The idea is to use Padé-theory techniques to continue analytically the
sum of the perturbation theory expansion for the quasienergy calculated to a high order N :
E(E0) = ∑N

0 a(2m)E (2m)

0 , to nonperturbative E0, where the series no longer converges. The
coefficients a(2m) can be obtained with good accuracy to high order. The method works for
Rydberg states, as well for the ground state of H. QS was confirmed, and excellent agreement
of the rates was found with Potvliege and Smith [61] and Potvliege and Shakeshaft [67]. The
results for Re E were in very good agreement with those of Vos and Gavrila [39].

S-matrix theory, one of the major approaches of scattering theory, has also been applied to
derive multiphoton ionization rates. In principle, its predictions should be equivalent to those of
the Hamiltonian theories (Floquet theory, TDSE wavepacket calculations), but in practice the
results have differed because of the approximations made. The Hamiltonian is split into a zero-
order term plus a correction, and an expansion of the S-matrix with respect to the corrective term
is carried out. To obtain tractable formulae, only lowest-order terms are retained. The result
depends critically on the way the Hamiltonian is split, and on the ‘in’ or ‘out’ forms used for the
matrix element. The approximate matrix element S f i is eventually obtained as an infinite sum
over n-photon contributions S(n)

f i of the form S f i = ∑
n δ(W f − Wi − nω)S(n)

f i , with analytical

expressions for the S(n)
f i . The stumbling block is that the eigenvalues in δ(W f − Wi − nω)

pertain to the Hamiltonian of the zeroth approximation and, for the choices made, they did not
adequately represent the atom in a high-intensity field. This jeopardizes the result of setting
S(n)

f i on the energy shell. (In principle, the energy conservation equation could be improved,
by including higher-order terms in the S-matrix expansion, but this was not done.)

An early attempt along this line was that by Gersten and Mittleman [88, 89], sometimes
inadvertently considered to be a precursor of QS as resulting from HFFT. This is not
substantiated by a closer reading. Indeed, whereas HFFT operates under the high-frequency
condition (5), which for H reads basically ω > 0.5 au, these authors considered their theory
to be low frequency, restricted by the condition ω < 0.5 au. The energy conservation
equations used, W f = Wi + nω, were inadequate at high intensities (both at low and high
frequencies), because they contained unperturbed energy levels (see [88, equation (3.7)]). As
a consequence, the well established channel closure at low frequency and high intensity cannot
occur. Moreover, the expressions for the rates derived differ from those of the HFFT, both for
circular and linear polarizations (compare with our equations (11) and (12)).
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S-matrix theory for strong fields was developed later more systematically by Reiss
(see [90, 91], and also [15]). In the energy conservation equations used, the binding
energies of the atom in the field were approximated by unperturbed binding energies plus
the ponderomotive energy due to the field [90, equation (35)]. Consequently, the binding
energies increase indefinitely with the field intensity, to the effect that all ionization channels
close successively [91, figure 3], irrespective of frequency. At high frequencies this contradicts
the numerical results of Hamiltonian theories. All Hamiltonian theories predict that the binding
energy of an atom decreases with intensity (see, e.g., figure 1). For Floquet-type predictions,
this follows from the work by Dörr et al [50, 55]. It follows also from the TDSE study of the
energy of ejected electrons, as was shown convincingly by Su and Eberly [92]. Consequently,
the S-matrix stabilization curves obtained in [91, figure 3] differ from those of HFFT (see our
figure 2) and full Floquet theories (e.g., [50, figure 1]).

Other methods for determining quasienergies use TDSE. One of them is spectral analysis.
The autocorrelation function 〈�(r, 0)|�(r, t)〉 of a wavepacket �(r, t) evolving in a constant
amplitude monochromatic field, with its initial condition �(r, 0), is computed numerically.
By Fourier transforming, the quasienergy spectrum of the states present in �(r, t) can be
extracted. In the presence of closely lying quasienergies special precautions need to be taken
(e.g. filter diagonalization). The potential of the method was demonstrated by Millack [76] in
a 1D study of QS14. QS and the existence of oscillations in the large-α0 behaviour of � [44]
were confirmed.

Another such TDSE method,denoted as the ‘(t, t ′) method’, was developed by Peshkin and
Moiseyev [75]. It is based on treating the time as a dynamic variable in an extended Hilbert
space of space-time functions. Thus, procedures from time-independent scattering theory
(‘half-collision’ case) can be implemented. By applying further complex scaling techniques,
it was shown that numerical results could be obtained for the quasienergies. As an illustration,
the oscillatory behaviour of the ionization rate in the QS regime for 1D models [44] was
regained. The method was also applied to calculate the decay rate � of the autoionizing
doubly excited state (2s)2 of He in a linearly polarized laser field [95]. It was found that
a QS regime does indeed exist. Its onset was interpreted as being due to the suppression
of electronic correlation, when the doubly excited state dichotomizes into the form for a
double-well dressed potential (see end of section 2.1.2). For ω = 5 eV (KrF laser), the
beginning of the QS range (maximum of �) was calculated to occur at the accessible intensity
of 2.3 × 1015 W cm−2.

A semiclassical approximation was developed by Ivanov et al [96]. By writing the
wavefunction as �(x, t) = exp[iS(x, t)] and assuming classical conditions (neglect of the
classically unaccessible areas, where E < V (x)), S(x, t) is real and satisfies the Hamilton–
Jacobi equation. S(x, t) is then decomposed as S = S1 + S2 +σ , where S1 represents the known
field-free motion in the atomic potential, S2 the known free-electron motion in the laser field
and σ the unknown interaction of the two motions. The assumption is made that the atomic
motion is slow with respect that of the free electron in the field,and that the excursion amplitude
corresponding to motion S2 is small with respect to the size of the S1 orbit. By then applying
known classical procedures for dealing with this situation, σ was determined analytically.
Returning to �(x, t), multiphoton transition probabilities could be derived. Specific cases of
laser radiation interacting with high-lying Rydberg states were considered, and ionization rates
could be calculated analytically; these manifest QS. One of these cases was shown to confirm
the model of Rydberg state ‘interference stabilization’ developed over the years by Fedorov
and collaborators (see [97–99], and also [15]).

14 It was shown that the method can achieve comparable accuracy with Floquet methods [93] (see also [94]).
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3. Dynamic stabilization

We have so far discussed QS as predicted (primarily) by Floquet solutions of TDSE. These,
however, are special non-normalizable solutions satisfying peculiar boundary conditions. On
the other hand, according to quantum mechanics, normalized wavepackets are the ones that
carry the physical information. The natural question arises: is there a form of stabilization
for one-electron atoms emerging from the wavepacket description of TDSE? If so, what is the
connection with QS? Does stabilization also exist in classical dynamics? These, and related
questions, will be addressed in the present section.

3.1. Wavepacket calculations

In typical experiments, a laser pulse of finite duration τ acts on an atom initially in some
field-free energy eigenstate, leaving it in some continuum field-free state. The outcome
is characterized by measured ionization yields. To simulate this situation theoretically, a
wavepacket �(t) is propagated numerically in the laboratory frame (in the length or velocity
gauges), starting from the specified initial condition. The ionization probability density
per energy interval at the end of the pulse, PE (τ ), is given quantum mechanically by
PE (τ ) = ∑

γ |〈uE,γ |�(τ)〉|2, where uE,γ is assumed to be the energy-normalized continuum
solution, and γ a possible degeneracy label. The total ionization probability is

Pion(τ ) ≡
∫

PE (τ ) dE = 1 −
∑

n

Pn(τ ), (15)

where Pn(τ ) is the excitation probability to the discrete state n. The sometimes displayed
Pion(t) at times 0 � t � τ during the pulse does not have physical significance, as only for
t � τ does the Hamiltonian again become time independent.

For arbitrary polarization, the field of the laser pulse can be written as

F (t) = F0[ f (t) sin ωte1 + g(t) cos ωt e2], (16)

where F (t) can be either the electric field E(t), or the vector potential A(t). For arbitrary
polarization, the pulse has two different shape functions f (t), g(t), along the axes e1, e2,
respectively; F0 is the overall peak value. For linear polarization, the case most investigated,
g = 0. The shape functions considered have had various kinds of turn-on and turn-off (more
frequently linear, sin2; seldom Gaussian, sech), and, possibly, a flat top in between15.

It was recognized early on (see, e.g., [100, 101]), and emphasized in recent mathematical
studies (e.g. [102–104]), that the displacement (δr)τ and the drift momentum (δp)τ , acquired
by a free classical electron during the pulse

(δr)τ ≡ α(τ ) = 1

c

∫ τ

0
A(t ′) dt ′, (δp)τ ≡ α̇(τ ) = −

∫ τ

0
E(t ′) dt ′, (17)

are relevant for the value of Pion of an atomic electron driven by the same pulse. Indeed, if the
field is strong, the effect of the nuclear force on the motion of the atomic electron is practically
negligible, so that the electron behaves like a free particle during most of its oscillation. If
these quantities vanish at the end of the pulse, or are small, the electron has more chance of
being recaptured by the nucleus (survival of the neutral atom) than otherwise; see also further
on, section 3.2, equation (26).
15 Although the pulse was most of the time smoothly turned on, it was often discontinuously turned off. This renders
the extraction of a final value for Pion (τ ) difficult, because then Pion (τ ) has large oscillations with respect to τ ; in
the realistic case with a smooth turn-off, these oscillations are damped, so that the value of Pion emerges neatly; e.g.,
see [106, figure 17].
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Theoretically, pulse envelopes can be chosen arbitrarily, so that (δr)τ and (δp)τ need not
be vanishing, or small. Many calculations have been done under such circumstances. It has
been recently realized, however, that there are experimental constraints imposed by the optical
media generating the pulses. H G Muller has pointed out that physical pulses need to satisfy
the conditions (see [17])16∫ τ

0
A(t ′) dt ′ = 0,

∫ τ

0
E(t ′) dt ′ = 0. (18)

Combining equations (17) and (18) leads, for physical pulses, to

(δr)τ = 0, (δp)τ = 0. (19)

Thus, the experimental conditions automatically impose the ideal situation for atomic survival
(in NR dynamics).

Equations (15)–(19) were written for the case of pulses with finite duration τ (e.g. sin2).
For pulses with infinite duration (e.g. Gaussian, sech), characterized by an FWHM (full width
at half maximum) τp, the integrals need to be extended from −∞ to +∞.

3.1.1. Model studies. The wavepacket version of stabilization was discovered by Su, Eberly
and Javanainen (1990) [2] for a 1D atomic model; this and later work of the group was
summarized by Eberly et al [105] and Su [106]. Many calculations followed. They were done
either in the laboratory frame or in the oscillating KH frame, by using short-range potentials
or ‘soft-core’ Coulomb potentials. Short-range potentials sustain a finite number of levels,
whereas Coulomb-tail potentials (behaving like 1/|x | at infinity) sustain an infinite series
of Rydberg states. ‘Soft-core’ Coulomb potentials have the 1/|x | singularity at the origin
softened (replaced by a ‘soft core’) such that V (0) is finite, to make the problem tractable in
one dimension. It turns out that the stabilization results are rather insensitive to the potential
model chosen within each of the two categories. Note that the pulses used in earlier papers did
not always satisfy the necessary conditions (equation (18)), which were not known at the time.

These TDSE studies have shown that for one-electron atoms subject to pulses of fixed
shape as in equation (16), Pion does not rise to unity as the peak amplitude F0 increases,
as might have been expected. Instead, beyond some critical field value, Pion either decreases
(possibly in an oscillatory manner), or presents a plateau behaviour, levelling off at some value
Pion < 1. This phenomenon has been termed ‘dynamic stabilization (DS)’17. All calculations,
with one exception, have confirmed the existence of DS (see section 3.3).

We emphasize that, whereas QS characterizes an intrinsic property of the atom
(specifically, of its modes of ionization), DS depends critically on the laser pulse applied,
i.e. on the manner in which the atom is handled experimentally. As with QS, we are dealing
here with a counter-intuitive effect, when more driving force applied to the atom generates
less, or the same response.

Further 1D calculations of DS for a soft-core Coulomb potential were done by Wiedemann
et al [107], Su et al [108] and Florescu et al [109]. For short-range potentials, work has been
done on the screened soft-core Coulomb potential by Patel et al [110], and on the δ potential,
V (x) = −Bδ(x). The δ potential has been a source of controversy: some authors have
found DS for it (Sonnenmoser [101], Su et al [111], Geltman [112], Dörr and Potvliege [113]),
16 The Muller argument runs as follows. Experimentally, the low-frequency Fourier components E0(ω) of the electric
field E(t) are suppressed by optical materials: E0(ω) → 0, as ω → 0. Using the integral expression of E0(ω) in
terms of E(t), this is expressed in terms of the second condition of equation (18). Further, as E0(ω) = (ω/c)A0(ω),
if E0(ω) → 0 sufficiently rapidly, also A0(ω) → 0, which is expressed by the first condition of equation (18).
17 In contrast to [17], we are including here in the definition of DS the possibility that Pion has a plateau behaviour at
Pion < 1, in order to encompass the recent findings discussed in section 3.1.2.
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whereas others have not (Geltman, in his earlier papers [114], Mercouris and Nicolaides [115]).
The issue will be discussed in section 3.3.

We shall now present 1D results for DS from two recent calculations. The first one, by Su
et al [108], is the evaluation of Pion for the soft-core Coulomb potential Vs(x) = −(1+ x2)−1/2

(binding energy 0.67 au). A laser pulse of the form of equation (16) for the electric field E(t)
was applied, the envelope E0(t) having a sin2 turn-on/off of length τ0 = 5 cycles, and a flat top
of length T = 40 cycles in between; the frequency was ω = 0.8 (a high-frequency situation).
The peak field E0 was varied from zero to large values. For this pulse, conditions (18) are only
partially satisfied (resulting in (δp)τ = 0, (δx)τ �= 0). The calculation displays the following
ionization regimes (see [108, figure 1]). First comes the LOPT regime, at small intensities,
in which Pion is roughly proportional with I , as expected. This is followed by the ‘death
valley’ regime18, occurring at intensities of about 1 au, where Pion is close to unity. An atom
subject to a pulse with peak intensity in this range has little chance of surviving in a neutral
state. Thereafter, we have the DS regime, in which Pion decreases slowly with I , albeit in an
oscillatory manner (an interpretation of the origin of the oscillations was given in [108], see
also [113]). Note that although conditions (19)) are not satisfied, the model does display DS.
At still higher intensities (I � 102 au), this calculation shows the existence of a ‘destabilization
regime’, in which Pion increases again. This occurrence will be discussed in section 3.2.

Figure 3 shows the recalculation by Florescu et al [109] of the result by Su et al [108].
Along with the case T = 40 cycles considered in [108], also included are the cases T = 0
(purely sin2 envelope) and T = 10, all at τ0 = 5 cycles19. The four regimes of Pion are apparent.
Ionization is stronger at larger T , as there is more time for ionization during the flat top of
the pulse. Moreover, for all values of T there is a high amount of survival probability at the
minimum of Pion (separating the stabilization and destabilization regimes), where Pion ≈ 0.2.

The second calculation we consider, due to Patel et al [110], is a systematic study of
Pion for the potential V (x) = −(2 + x2)−1/2 exp(−x2/β2), for 3 � β � 75, with a ground-
state binding energy of about −0.5 au. Although this is a short-range potential that supports
only a finite number of bound states, as β becomes large their number increases, and they
approach the levels of the soft-core Coulomb potential: −(2 + x2)−1/2. The laser pulses were
taken as in equation (16), with f (t) = sin2(π t/τ), in one case for A(t), and in the other for
E(t). The frequency was ω = 1 (a high-frequency case), and E0 and τ were varied over
the ranges 0 � E0 � 50 au and 0 � τ � 50 cycles. The quantities in equation (17) were
also calculated. For the A(t) pulse, (δp)τ is always vanishing, but (δx)τ vanishes only if τ

is an integer number of cycles, i.e. condition (19) is only partly satisfied. The results were
presented in the form of 3D graphs for Pion(E0, τ ) (see [110, figures 2 and 3]); the plane wave
connection E0 = ωA0/c was adopted to translate the peak value A0 of the A(t) pulse into
an E0 amplitude. We reproduce in figure 4 the results for the A(t) pulse. Sections through
the surface Pion(E0, τ ) at a larger τ yield curves similar to those in figure 3, confirming the
existence of the DS regime. (The difference in aspect of figures 3 and 4 stems mainly from
the different scales used on the abscissa.) Very short pulses yield a different pattern for Pion :
following a steep rise with E0, Pion stays nearly constant.

By varying the range of the potential β, one could investigate the effect of the number
of bound states on DS. It was shown that the more bound states the potential has, the smaller
Pion(E0, τ ) becomes for the same pulse, which enhances DS. Also, the effect on DS of the
nonobedience of conditions (18) was considered. This is attenuated for long-range potentials,
because, although now (δr)τ , (δp)τ are nonzero, the electron can still be trapped at the end

18 We use this terminology because the death valley of wavepacket calculations corresponds to that of Floquet
calculations (see section 2.1.3).
19 At T = 40 the agreement between calculations [109] and [108] is at the graphical level.
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Figure 3. Total ionization probability for a 1D model with soft Coulomb potential (binding energy
0.67 au). Laser pulse for E(t), of frequency ω = 0.8 au, with sin2 turn-on/off of five cycles, and
a flat top of T cycles in between, as calculated by Florescu et al [109]. Calculation at T = 0 was
originally done by Su et al [108].

(This figure is in colour only in the electronic version)

of the pulse in highly excited states (with large spatial extension), whereas this cannot happen
for short-range potentials with few, tightly bound states.

2D and 3D models have also been considered. Recent calculations by Patel et al
[116, 117], in two dimensions, have concentrated on a soft Coulomb potential of the form
V (x, y) = −(a2 + x2 + y2)−1/2, and have studied the evolution of |�(x, y, t)|2 for various
degrees of ellipticity. A comon field envelope was taken in equation (16), f (t) = g(t), for
the short trapezoidal pulses of circular polarization used; see, however, the remark at the end
of section 3.1.3. |�(x, y, t)|2 displayed rotating ring structures, indicative of the presence in
�(x, y, t) of superpositions of dressed HFFT states for circular polarization, excited during a
nonadiabatic turn-on. At frequency ω = 1, DS was found to exist for arbitrary polarization,
‘death valley’ being deeper for circular than for linear polarization. A similar study, for the
same potential and circular polarization, was carried out by Chism et al [118] at ω = 1.2.
A rotating ring structure was again found for |�(x, y, t)|2, and compared to [117, figure 2].
A calculation of the lifetimes [118, figure 1], however, resulted in excessively high values at
larger fields, out of line with 3D calculations for H [27, figure 18], and [142].

3D DS from excited states of H (linear polarization) was studied by Popov et al (see [119],
and references therein), using a soft-core Coulomb potential. The states considered were n = 3
and all possible l, m values. Photon energy was ω = 5 eV, larger than the binding energy of
the states, but smaller than that for 1s. The states which were lowest in the magnetic manifolds
m = 1, 2 (e.g. 3p, m = 1; 3d, m = 2) satisfied unambiguously the high-frequency condition
ω > W (m)

exc , and displayed ionization curves Pion with one maximum, followed by DS, as for
the ground state [119, figure 1]. For the states lying higher in the magnetic manifold m = 0,
more complicated shapes appear.
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Figure 4. Ionization probability for a 1D model (see text), following a pulse A(t) =
A0 sin2(π t/τ ) sin ωt , with 0 < t < τ , ω = 1 au, variable duration τ (in cycles) and peak
amplitude E0 ≡ω, A0/c (from Patel et al [110, figure 2]).

A 3D short-range potential model with a soft core and one level only was studied by
Tikhonova et al ([120] and references therein). Three frequencies were considered: one decid-
edly HF, the others only marginally so. The first one presented the usual HF features, including
DS. The other two appeared to display mixed low- and high-frequency features, e.g. channel
closure at low intensity, followed by LIS appearance, and HF behaviour at large intensity.

Two-electron atoms have also been explored with 1D models, including correlation. The
potentials considered were of the soft-Coulomb form, V (x) ∼ (a2 +x2)−1/2, for both electron–
nucleus, and electron–electron interactions. The two ionization potentials W1 and W2, for one-
and two-electron ionization respectively,are now natural terms of comparison forω. The search
for DS in the one-electron ionization probability was carried out by Grobe and Eberly [121]
(H−), and Bauer and Ceccherini [122] (He). Their findings are divergent, possibly due to the
different ionization regimes involved. Thus, for W1 < ω < W2, DS was found in [121] but not
in [122], and for ω > W1, W2, DS was found in [122], but not in [121]. Further study is needed.
The analysis of |�(x1, x2, t)|2 in [122] yielded a predominantly dichotomous structure during
the flat top of a not too rapidly turned on pulse, as would be expected from the two-electron
HFFT (see [63, 64], and section 2.1.2).

3.1.2. Realistic 3D calculations. Fully-fledged 3D calculations for DS in the ground state
of H were carried out first by Kulander et al [123] (see also [124]), Tang and Basile [125] and
Horbatsch [126]. The work by Kulander and collaborators was done in the length gauge, while
that by Tang and Basile was done in the velocity gauge, identified as the most convenient for
the laboratory frame; the work by Horbatsch was done in the oscillating frame. A main thrust
in [123] and [126] was to establish the connection between DS and QS, by extracting rates
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from TDSE wavepackets � . By considering slowly turned on pulses with a flat top, from the
(quasi) exponential decay during the flat top of either the norm of � in a sphere of radius R, or
of the projection of � on the unperturbed ground state, rates � were extracted. These were then
compared with Floquet results. Although the accuracy was limited at the time, QS was clearly
confirmed. Subsequently, Latinne et al [127] carried out a 3D calculation in order to test the
validity of the dipole approximation (see section 4.2.2). In the process, dipole-approximation
DS was confirmed for a quasiadiabatic pulse regime and H in the ground state [127, figure 2].

Tang and Basile [125] (see also Lambropoulos and Tang [128]) studied short pulses and the
effect of the pulse duration on DS. They also compared the predictions of their 3D computation
with results obtained from a typical 1D soft-core Coulomb model, in order to assess the merit
of such models. A Gaussian envelope was used for A(t); equations (18) and (19) were satisfied
to good accuracy. Pion was evaluated rather accurately for ω = 1, at a number of values of
τ (4π, 10π, 20π au), and several peak intensities I (0.2, 1, 5, 25 and 100 au)20. They found
that the 1D model substantially exaggerated the survival probability and DS in comparison to
the 3D case. Moreover, from their numerical 3D results they concluded that an experimental
demonstration of DS for the ground state of H was out of reach for the ‘foreseeable future’.
The conclusion reflected the experimental limitations at the time, when none of the necessary
laser prerequisites were available: high frequencies, high intensities and very short pulses.

This realization has channelled attention to DS of excited states of H (see also sections 2.1.1
and 4). Pont et al [129, 59] (see also [130]) have considered linear polarization at ω = 0.2 au,
an energy that is high with respect to the binding energies of the n � 3 states considered,
and within experimental reach. They ascertained that DS did exist for these cases. The
fact that DS can occur for photon energies below the ionization potential of the field-free
state was confirmed for H by Huens and Piraux [131] (a situation already encountered in 1D
calculations, e.g. [2]). The state chosen was 2s, and Gaussian pulses of linear polarization and
various durations were applied. By considering the population distribution at the end of the
pulse, it was also shown that, for short pulses or high intensities, much of the population is
projected into excited states, which sheds light on the physical origin of DS (see section 3.2).
The paper by Gajda et al [132] is one of the few that have studied DS numerically for circular
polarization. The vector potential A(t) was taken similarly to equation (16), with g(t) = f (t)
(see, however, the remark at the end of this section). The excited states 2p, m = 0,±1 and
the relatively high frequency ω = 0.25 au were chosen. For the m = 0, 1 substates, DS was
conspicuous, whereas for m = −1 it was much weaker at the intensities considered. Piraux
and Potvliege [133] have studied the 5g, m = 4 state, appearing in the experiments of Muller
and collaborators; we discuss the results in section 4.

A recent paper by Bauer et al [134] has readdressed the issue of ground-state stabilization
of H, after a long lapse of time; one case of DS was studied (sin2 pulses at ω = 50 eV, 30
cycles duration), and two cases of QS (at ω = 17 and 50 eV), both for linear polarization.

A comprehensive computation of DS for the ground state and linear polarization was finally
carried out by Dondera et al [135] (pulses of finite duration), [136] (pulses of infinite duration),
in which Pion was mapped out over extended ranges of high frequencies (0.51 < ω < 8 au),
peak field amplitudes (0 < E0 < 80 au, depending on ω), for various pulse envelopes (sech,
Gaussian and cos2) and FWHM pulse durations τp (1 < τp < 100 cycles, depending on ω).
The computation was motivated by the advent of high-frequency light sources: VUV-FELs,
that are now in test operation (HASYLAB at DESY, [137, 138]) or under construction (BNL),
and attosecond pulses produced by high-harmonic generation [139, 140].

20 These calculations were repeated in a few cases by Dondera et al [136], and the agreement was within a few tenths
of one per cent.



R170 Topical Review

The TDSE was integrated in the velocity gauge using a highly efficient numerical program,
exhaustively optimized [141], and retested at high frequencies with excellent results. The
accuracy on Pion was estimated at better than 1%. The pulses considered were linearly
polarized, of the form equation (16) for A(t). The following choices of shape functions
were made:

fsh(t) = sech(1.763t/τp),

fg(t) = exp[−(1.177t/τp)
2],

fc(t) = cos2(1.144t/τp), |t| < πτp/2.288,

(20)

where τp represents FWHM21 for A2. These functions are very much alike in their central parts
(−τp/2 < t < +τp/2), but differ substantially in the shape of their wings. Their choice has an
exploratory character, as it is not clear what the pulses produced by the high-frequency light
sources will look like. All these pulses satisfy the requirements of equations (18) and (19), for
any τp.

Figures 5–8 show results for Pion at ω = 1, 2, 4 and 8. A nominal peak electric field E0

was introduced for reference, via the plane wave connection: E0 = (ωA0/c). (It can actually
be shown that E0 coincides with the peak value of the electric field of the pulse.) The values
of E0 considered extend up to about the limit at which nonrelativistic (NR) calculations are
expected to be valid (see section 4.2). For longer pulses, the figures show a dependence of
Pion on E0 similar to that emerging from 1D calculations (see figure 4): an incipient growth
with E0, followed by a maximum and then by a monotonic decrease (for sech pulses this is
more like a plateau). The latter regime is that of DS, quite prominent in all cases. It was
confirmed that 1D model calculations, done under similar pulse conditions, yield misleadingly
small Pion . Moreover, in contrast to the 1D case (see figures 3 and 4), Pion has no oscillations
in the DS regime. The dependence of Pion on the pulse shape is quite marked. Since these
pulses practically coincide in their central parts, the difference stems from the shape of their
wings. The manifestation of DS is different for the cos2 pulses (finite extension) and Gaussian
(infinite extension, but rapidly decreasing wings), on the one hand, and for the sech pulses
(infinite extension, but more slowly decreasing wings), on the other. In the first case, Pion is a
decreasing function of E0; in the second, the function is flat (with Pion < 1). The dependence
of Pion on ω is quite strong, leading to more prominent DS and atomic survival as ω increases,
but on the other hand requiring larger peak values E0 for DS to set in. The longest τp leading
to DS at a detectable value of Pion (i.e. not too close to unity) is in the femtosecond range, and
increases slowly with ω. Short pulses (τp < 1) yield a different picture. For the extreme case
of τp = 0.25, Pion becomes practically constant at large E0 (more slowly at larger ω). For
somewhat longer pulses (e.g. τp = 1), this situation has not fully developed in the E0 range
shown, and Pion is still in its growing stage.

The conclusion of the work by Dondera et al [135, 136] was that there is prominent DS in
peak-field ranges where NR calculations should be valid, DS manifests a strong dependence
on the shape of the pulse envelope and the evolution of the atom is remarkably adiabatic up
to large fields and down to short pulses (see figure 9). The results indicate that DS should be
observable with the new light sources (VUV-FELs or attosecond pulses generated by high-
harmonic generation), albeit in a state-of-the-art experiment.

Meanwhile, using a similar numerical program, Boca et al [142] have investigated DS
for the ground state of H, with circularly polarized radiation. The vector potential A(t) was
taken as in equation (16), with g(t) = f (t − 2π/ω). This is required by the fact that the pulse
component on one of the axes is retarded by a quarter wavelength with respect to the other axis
(e.g., consider the case of quarter-wave plates). f (t) was taken as in equation (20), and also
21 For the cos2 pulse, the connection between the actual duration of the pulse τ and τp is τ = 2.75τp .
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Figure 5. Ionization probability of ground-state H exposed to pulses with ω = 1 au and one of the
triplet of envelopes in equation (20), at various FWHM pulse durations τp , as a function of the peak
field E0 (in au). Sech pulses, solid curves; Gaussian pulses, dashed curves; cos2 pulses, dotted
curves. The value of τp , in cycles, is specified for each triplet of envelopes (the corresponding
values Pion coalesce at small E0) (from Dondera et al [136]).

of Lorentzian form: f (t) = [1 + (1.29 t/τ 2
p)]

−1. The results are qualitatively similar to those
obtained for linear polarization. The same marked dependence of DS on the pulse envelope
has emerged. In particular, for the Lorentzian envelope, no DS was found at all: Pion continued
to increase in the intensity ranges covered, a fact signalled by Piraux and Potvliege [133]. Our
choice of g(t), as opposed to taking g(t) = f (t), has substantial effect for few-cycle pulses;
for longer pulses (τp > 5), the effect fades away.

3.2. Physical interpretation of DS. Connection with QS

The existence of DS ascertained, we shall now enquire into the physical origin of the
phenomenon. We shall also answer the question of its connection with QS. The issues are
subtle, and their elucidation was slow to come.

It has been realized that a useful approach for describing high-frequency phenomena,
including DS, is to analyse wavepacket solutions �(r, t) of equation (4) in terms of
superpositions of dressed eigenstates vν(r ; α0) of the HFFT structure equation (equation (6)).
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Figure 6. The same as for figure 5, except that ω = 2.

It was shown in section 2.1.1 that in a field of constant amplitude these are approximate
quasistationary states. As they form a complete set (at any α0), the following expansion
formula holds:

�(r, t) ∝ Sνdν(t)e
−iWν tvν(r, α0). (21)

Sν stands for summation over the discrete, and integration over the continuous spectrum. The
coefficients dν(t) are time-dependent, even for a field of constant amplitude; they are constants
only in the high-frequency limit.

Let us now consider the case of a laser pulse with time-dependent envelope, described by a
certain α(t), equation (2). In the exact space-translated Schrödinger equation, equation (4), the
time dependence of the oscillating potential comes on the one hand from the rapid oscillations
of the field, and on the other from the variation of the envelope. If the latter variation is slow
during a period 2π/ω, one can average over the field oscillations (as was done in the stationary
HFFT), which leads to[

1

2
P 2 + V0(α0(t), r)

]
� = i

∂�

∂ t
. (22)

By now expanding �(r, t) in the instantaneous eigenfunctionsvν(r, α0(t)) of the Hamiltonian
in equation (22), one gets an extension of equation (21). The time dependence of the dν(t)
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Figure 7. The same as for figure 5, except that ω = 4.

can be determined by inserting �(r, t) into equation (22). Patel et al [110] and Barash et al
[143], have shown this high-frequency approximation to work rather well in practice.

Although the quantities |dν(t)|2 do not have, strictly speaking, an observable meaning
during the pulse, they are useful to illustrate the population migration over the approximately
stationary states vν , and eventually into the field-free states. This has been illustrated in various
ways, for example by considering the evolution of the probability density P(r, t) = |�(r, t)|2,
or of the projection of �(r, t) on bound states, |dν(t)|2 = |〈vν |�〉|2. If the pulse is not turned
on too abruptly, and the initial state is the ground state, only one or a few lower discrete
states vν(r, α0) will be excited. This has a characteristic signature on the form of P(r, t) and
|dν(t)|2. It should be kept in mind, however, that, all along, there is a slow but steady build-up
of population in the continuum at the energies at which multiphoton ionization occurs.

Eberly and collaborators [2, 105, 106, 144], have followed the evolution of P(x, t) for
the 1D model with soft-core Coulomb potential Vs(x), and shown that at large peak intensities
P(x, t) contains wavepacket portions flying towards x = ±∞, representing ionization, but
that the dominant part of the wavepacket stays oscillating near the origin, at distances of order
α0. This occurrence has been termed localization, and is associated with large populations
|dν(t)|2 in low-lying states (see, e.g., [106, section 4]). Were only the ground state present
in the wavepacket equation (21), P(x, t) would have an oscillatory ‘dichotomous’ form, of
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Figure 8. The same as for figure 5, except that ω = 8.

the type discussed in section 2.1.1. In reality, because the pulses considered were rather short
and ω not sufficiently high, the localized oscillating shapes found had a more complicated
‘polychotomous’ structure, indicating that several dressed states had been excited. This was
confirmed in three dimensions by the detailed computations by Kulander et al [123, 124],
who followed P(r, t) over many cycles; a movie of its motion was made (a primer, at the
time).

The presence of only a few states in expansion equation (21) can also be inferred by
looking at the oscillations undergone by the populations |dν(t)|2 in the lower vν states. These
populations exhibit, on top of the fast oscillations of frequency ω imposed by the laser, slow
oscillations having the transition frequencies |Wi − W j | of the dressed states involved. The
analysis was done for various initial conditions, by Law et al (qualitative) [145], Burnett et al
(qualitative) [7], Vivirito and Knight (two-state model) [146] and Wells et al (virtually exact
HFFT description) [35].

The study of ionizing wavepackets in terms of dressed states, equation (21), has been
instrumental for the physical interpretation of DS and the identification of the relevant
parameters (see the reviews by Eberly et al [105] and Burnett et al [7], also [147]). However,
in order to establish a closer connection with Floquet theory, we shall adopt here for the
interpretation of DS an expansion in terms of Floquet states. We recall that Floquet states
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represent intrinsic modes of ionization of an atom, and are exact quasistationary solutions, for
constant amplitude fields (see section 2.1.1).

The expansion formula we use is

�(r, t) ∝ SνCν(F0)ψ
(ν)(r, t; F0), (23)

where ψ(ν)(r, t; F0) are the Floquet states, equation (5), for the laboratory or the oscillating
frame, and F0 the field amplitude; ω is fixed and assumed high. (Depending on the calculation,
F0 can stand for E0 or A0.) The summation Sν extends over discrete quasienergy states, but
also includes an integration over continuum states along an adequate contour in the complex
energy plane22. In a field of constant amplitude F0, Cν(F0) are obviously constant; in a
variable-amplitude field, they are time dependent, and ψ(ν)(r, t; F0) acquires an extra time
dependence due to F0(t). Because we are interested here in high ω (larger than the tightest
binding energy in the field), the discrete states entering equation (23) cannot be connected
resonantly by photon transitions; this has far-reaching consequences for the possible evolution
of the system. Conceptually, equation (23) is a good tool for understanding the dynamics in
strong fields in general, and in particular DS and its relation to QS. Equation (21) represents
basically the high-frequency limit of equation (23) (see section 2.1.2).

The simplest case in which a system can be described in terms of equation (23) is that when
the expansion contains approximately only one term, corresponding to an initial unperturbed
state23 ψ(0). This is the traditional single-state Floquet theory, presented in section 2. In this
case, during the pulse we have C0 ≈ 1, Cν �=0 ≈ 0, in equation (23), and the energy of the
system will follow in time the real part of the quasienergy Re E0, from its field-free value to
its peak-field value, and then back. Ionization occurs only from the state ν = 0, with the
instantaneous rate �[F0(t)]. An analysis shows that, in order for this to be possible, several
conditions should be met, e.g. see [13, section II]: � should be sufficiently small during the
pulse, no multiphoton resonances with excited states should occur and the pulse should be
‘adiabatically’ turned on and off. At high frequencies the first condition can be easily met and
the second is automatically fulfilled, so that the one to care about is the third. Adiabaticity
means that the envelope of the pulse F0(t) varies sufficiently slowly, allowing the electronic
motion to adjust continuously to the instantaneous value of the field intensity. The appropriate
timescale depends on whether we are dealing with low-lying states, or Rydberg states.

Under the adiabatic condition, simple reasoning yields the following formula for the
ionization probability Pion at the end of the pulse:

P(ad)
ion = 1 − exp

[
−

∫ +∞

−∞
�[F0(t)] dt

]
. (24)

Whereas the formula is intuitive, rigorous mathematical analysis shows its limitations
(e.g. Mittleman and Tip [148]). Conversely, if the dynamically computed Pion coincides
with P(ad)

ion , this indicates the presence of only one state in the expansion equation (23).
The remarkable extent to which the dynamic Pion is approximated in practice by P(ad)

ion has
been signalled by Zakrzewski and Delande [77]. They compared the results for P(ad)

ion from their
Floquet calculations for the initial states 2p, m = 0,±1, of H with the dynamically calculated
Pion , for the same pulse conditions (sin2 pulse of 20 cycles, at ω = 0.25 au) by Gajda et al
22 Expansion equation (23) expresses the mathematical completeness of the Floquet system of states. This is a
delicate property, which was rigorously proven for the case when the quasienergies are real, i.e. the Floquet states
have scattering boundary conditions, but has still to be worked out for the case of Gamow–Siegert boundary conditions.
For comments and references, see Wells et al [35].
23 The unbounded asymptotic behaviour of ψ(0) requires the presence of a weak admixture of continuum states in the
expansion equation (23), whose destructive interference with ψ(0) can ensure the normalization of the wavepacket
�(r, t).
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Figure 9. Comparison at ω = 2 of the E0 dependence of the computed ionization probability of
ground-state H (full curves) and the adiabatic approximation equation (24) (dotted curves). The
values of τp , in cycles, are given for pairs of such curves. Sech and cos2 pulses are presented; cos2

pulses are distinguished by an asterisk on their τp value (from Dondera et al [136]).

[132], and found surprising agreement. The agreement covered the range of peak fields E0, in
which �(E0(t)) manifested QS, and Pion manifested DS. The result was confirmed by other
calculations for the H atom, done by Piraux and Potvliege [133, e.g., see table 1] (Rydberg
state) and Dondera et al [135, 136] (ground state), and by the 1D calculations of Dörr and
Potvliege [113, figure 1]. We show in figure 9 a comparison at ω = 2 of Pion and P(ad)

ion for the
ground state of H, according to Dondera et al [136]. Two types of pulse are shown, sech and
cos2, as defined by equation (20). Obviously, the larger τp, the better the two results agree. It is
apparent that, for the pulse shapes considered, the evolution of the atom is, indeed, remarkably
adiabatic up to quite high values of E0 (e.g. E0 < 10), even for short pulses (τp

∼= 5), and that
the agreement extends well into the DS regime.

As discussed in section 2, for ground states, �(0)(F0) starts by increasing with F0, passes a
maximum (corresponding to death valley of the lifetime), and thereafter decreases, undergoing
QS. This behaviour of the rate has to be convoluted with the pulse shape in order to get P(ad)

ion of
equation (24). The result may display DS or not, depending critically on the pulse shape. For
narrow-wing pulses (cos2, Gaussian) P(ad)

ion is decreasing (on average) with F0; for broader-
wing pulses (sech) it has a plateau (see figures 3 and 4 for the 1D case, and figures 5–9 for the
3D case). Hence, for adiabatic pulses of these types DS is a consequence of the underlying QS.
On the other hand, very broad-wing pulses (e.g. Lorentzian) lead to monotonically growing
P(ad)

ion , i.e. no DS (Boca et al [142]). A similar situation was signalled for Rydberg states by
Piraux and Potvliege [133]. Conversely, at given pulse, P(ad)

ion is quite sensitive to the form of
�(F0) of the state considered, and can manifest DS or not; this is illustrated by figures 2–4
of [77].
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Until recently, the criterion of adiabaticity was not much of a limitation, as even the
shortest available pulses satisfied it. This has changed spectacularly in recent years. Ultrashort,
reproducible pulses have been generated at peak intensities of about 1 au, at various frequencies
in the visible and near infrared, with pulse durations of less than 5 fs, and high repetition rates
(see [11]). This means that, in few cycles, the intensity varies in the enormous range from 0
to 1016 W cm−2. Of even more recent date is the generation of attosecond pulses [139, 140].
Note that the theoretical investigation of the effects of such short pulses on MPI and DS started
long before they were produced experimentally.

If the adiabaticity condition required by single-state Floquet theory is not met, more terms
need to be included in the expansion equation (23). This is the ‘multistate Floquet theory’,
capable of covering the case of an arbitrary laser pulse. We now discuss the interpretation of
DS based on it.

Let us assume that the frequency ω and the shape functions of the pulse are kept fixed in
equation (16), and that the peak amplitude F0 is increased starting from zero. For not too short
pulses, or not too large F0, such that dF0(t)/dt is small enough throughout the pulse, we are in
a situation typically illustrated by our figures 3 and 4, for the 1D case, and by figures 5–8, for
the 3D case. The evolution will be adiabatic, and the system will stay in one Floquet state, as
discussed24. At some larger F0, at times when dF0(t)/dt is large, the system will start feeling
the turn-on of the pulse as a shock, and will make transitions to excited Floquet states; i.e.,
one or several coefficients Cν �=0 will become appreciable during the turn-on. This occurrence
has been termed ‘shake-up’; we shall restrict the notion to the excitation of discrete excited
Floquet states (excluding continuum ones). As a consequence, at the end of the pulse the
system will have population in the field-free states associated with these Floquet states. Now,
ionization from higher Floquet states has reduced rates, especially since all binding energies
become smaller at high intensities (recall figure 1). Thus, more shake-up means smaller Pion ,
so that DS will persist when increasing F0. However, note that a change in the physical nature
of DS has set in: from adiabatic (related to QS), to nonadiabatic (related to shake-up).

With growing F0, dF0(t)/dt will become extremely large, and population will start to be
transferred directly to the continuum during turn-on, spread evenly over a certain energy range.
Consequently, expansion equation (23) will contain continuum Floquet states. Even in these
states, multiphoton (‘free–free’) transitions occur, but the yields are smaller for higher electron
energy. At turn-off, the atom suffers another shock, during which it may recapture some of this
freely oscillating population, but much of it will end up in the continuum of the unperturbed
atom, and will disperse. This effect we shall denote as ‘shake-off’. We are now dealing with a
change in the nature of the ionization: from multiphoton ionization, involving absorption of
photons, that can be described in terms of several discrete Floquet states and gives rise to well
defined lines in the EPI/ATI electron spectrum, to ‘shake-off’ ionization, caused by the shock
of the field amplitude, that cannot be described in terms of discrete energy photons, and gives
a continuous background to the EPI/ATI spectrum.

The realization that for pulses with very high peak field F0 and extremely large dF0(t)/dt
the electron oscillates practically freely and undergoes shake-off has led to the ‘strong-field
approximation’ (SFA), used in a variety of forms (see, e.g., [151], and references therein): the
electron wavepacket is assumed to evolve like that of a free particle during the whole pulse,
having as initial condition the initial atomic state ψi . Let us denote by �( f )(r,t) the free
electron wavepacket evolving from ψi in the absence of the field. It is easy to show that, in
the presence of the field, the wavepacket �(L)(r, τ ) corresponding to the initial condition ψi

24 The condition of adiabaticity poses a constraint on the magnitude of the matrix elements of the time derivative of
the Hamiltonian ∂H/∂t (in our case the Floquet Hamiltonian), hence on dF0(t)/dt; see e.g. [149, 150].
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becomes in the length gauge, at the end of the pulse25 τ ,

�(L)(r, τ ) = exp

[
−i

1

2c2

∫ τ

0
A2 dt

]
exp[i(δp)τ · r]�( f )(r−(δr)τ , τ ), (25)

where (δr)τ and (δp)τ are the classical free-particle displacement and drift given by
equation (17); for infinite-duration pulses, τ should be taken as ∞ (see section 3.1.2). If
one deals with physical pulses, for which equations (18) and (19) are satisfied, SFA leads to
the following ionization probability:

P(SF A)
ion � 1 −

∑
n

|〈ψn|�( f )(r, τ )〉|2. (26)

Note that P(SF A)
ion is smaller than unity and no longer depends on F0, which means that when

equation (26) is applicable, DS has been attained. However, as the assumptions made in the
derivation are rather drastic, equation (26) should be regarded as the limiting form of Pion

for extremely large F0, at fixed τ (for a mathematical formulation of this, see section 3.3).
Because of the spreading of the free-particle wavepacket �( f )(r,t), the longer the effective
pulse duration, the smaller the transition probabilities of discrete excitations will be, and the
larger P(SF A)

ion . The strong-field, short-pulse regime was investigated in the 1D case by Dörr
et al [151], with an eye on possible applications of the short pulses produced recently [11].
(For the 1D case, see also the earlier work by Sonnenmoser [101].)

These conclusions are borne out by the numerical results for DS presented in section 3.1,
which show that at short τ , Pion manifests a plateau with respect to E0 starting at several
au, depending on ω; e.g., consider the 1D case of τ = 1 in figure 4 [110] or the 3D case of
τp = 0.25 in figures 5–8 [136]. However, the plateau value equation (26) predicted by the
SFA is attained very slowly, as shown for one dimension by Dörr et al [151], and confirmed for
three dimensions by Dondera et al [135]. In these cases, the corresponding (δr)∞ and (δp)∞
are indeed zero, so that the application of equation (26) is warranted. On the other hand, if
one of (δr)∞ and (δp)∞ is nonvanishing (and therefore increasing with F0 at fixed envelope,
according to equation (17)), the SFA result for Pion , calculated with equation (25), increases
to unity. This appears to be the case with the result in figure 3, where condition (19) is not
satisfied.

Grobe and Fedorov [100] have shown that there is a limit to the times at which one can
expect the true wavepacket �(L)(r,t) to be represented adequately by the spreading free-
particle wavepacket �( f )(r,t). Indeed, at some time t∗, half the standard deviation �x(t) for
�( f )(r,t) will have grown to the point that it becomes equal to the excursion amplitude α0:
1
2 �x(t∗) ≈ α0. For t � t∗, the oscillating �( f )(r,t) can also then overlap with the nucleus
when at the turning points of its motion (where it has vanishing velocity), which yields a
large probability for electron recapture. This implies that the true �(L)(r,t) will then contain
bound-state components, not accounted for by �( f )(r,t).

3.3. Points of contention

Criticism has been raised in recent years regarding DS, based on the one hand on numerical
computations, and on the other on mathematical physics.

25 The result can be derived by passing ψi at t = 0 from the length to the velocity gauge (via the operator
exp(iA(0) · r) = 1), then propagating the wavepacket with U(τ ) = exp{(−i/2)

∫ τ

0 [P + (1/c)A(t)]2 dt}. Note
that U contains the factor exp(−iα(τ ) · P ) (see equation (2)) which has the effect of translating r into r + α(τ ), and
the factor exp(−i P 2τ/2), which implements free-particle propagation. By returning to the length gauge at the end
of the pulse t = τ , via the operator exp(−iA(τ ) · r), and taking into account equation (17), one obtains wavefunction
equation (25); see also Faria et al [102] Fring et al [104], Cycon et al [152].
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On the numerical side, Geltman [114] has studied multiphoton ionization for the 1D
delta-potential model, V (x) = −Bδ(x), with only one bound field-free state. By applying
his numerical methods, he did not find DS for flat-top pulses with sin2, or step-wise turn-on.
Instead of a Pion curve resembling those of figure 3, and displaying a DS branch, he found a
Pion growing to unity, and staying there (with slight oscillations). In [153] he expressed his
views opposing stabilization.

The numerical result of [114] was disputed early on by Sonnenmoser [101], who did find
evidence of DS for the same model. Somewhat later, Su et al [111] recalculated the problem
under the same pulse conditions, and found a Pion curve resembling the ones in figure 3,
i.e. confirming the DS regime. In a recent comment on the latter calculation, Geltman agreed
with all its results26.

Mercouris and Nicolaides [115] attempted to resolve the dispute by applying their
numerical method ‘SSEA’. This resulted in a Pion displaying no stabilization. The new
contradiction prompted Dörr and Potvliege [113] to recalculate the problem; they did find
DS, in close agreement with the results by Su et al [111].

On the mathematical side, rigorous results based on functional analysis have been obtained
by Schrader, Fring, Kostrykin and Faria for the total ionization probability Pion at the end of a
laser pulse (see [102–104] and references therein). These were expressed as bounds on Pion ,
on the one hand, and as limits of Pion , on the other.

General formulae for both upper and lower bounds on Pion were derived (denoted Pu and
Pl , respectively) (see [102, section 3]). Obviously, 0 � Pl � Pion � Pu � 1. The formulae for
Pl and Pu depend on the laser pulse via the two shifts (δr)τ and (δp)τ , defined in equation (17).
The formulae were then evaluated for n, l, m, states of H, and various forms of laser pulses. The
investigation did not find evidence of DS, but did not contradict its existence, either. Indeed,
no numerical calculation was signalled that violated the bounds. In fact this could hardly be
possible, as both the mathematical-physics approach and the numerical integration proceed
from TDSE. Obviously, numerical methods can never be exact, but the present computational
capabilities allow a quite satisfactory treatment of one-electron ionization (programming errors
excluded).

A different type of result was the derivation of limits of Pion for a laser pulse E(t) =
E0g(t), where E0 → ∞, and g(t) is a fixed function, nonvanishing only for 0 � t � τ .
The function g(t) is quite general (not necessarily oscillatory), and also covers the case of
equation (16). It was shown (see [104], [102, section 4], [103]) that

lim Pion =
{

P(SF A)
ion < 1, if equation (18) is satisfied,

1, otherwise,
(27)

where P(SF A)
ion is given by equation (26). The first case allows for the possibility of atomic

survival in a neutral state, while the second leads to complete ionization. Note that, from
the experimental point of view, only the first case is possible, as discussed in connection
with equation (18). These rigorous results substantiate the conclusions drawn from the SFA
(equation (26)).

3.4. Classical approach

Soon after DS was discovered quantum mechanically, the question arose of whether it had a
classical analogue. The idea of simulating ionization classically had already been successfully

26 Geltman [112] still disagreed with the interpretation of the wiggles of the DS branch, as given by Su et al [108, 111].
His point of view was countered by Dörr and Potvliege [113].
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applied to microwave ionization of highly excited Rydberg atoms (theory initiated by Leopold
and Percival [154], see also [155]; experiments by Bayfield and Koch [156]). The principle
of the method, known as ‘classical-trajectory Monte Carlo simulation’ or ‘microcanonical-
ensemble averaging’, is the following (see, e.g., [157]). The initial condition (for example, the
atomic ground state) is represented classically by a microcanonical ensemble in phase space,
with the fixed energy ε0 < 0 of a quantum state (distribution function ρ ∝ δ(ε−ε0)) and, in 3D
calculations, having also fixed angular momentum L, and (sometimes) fixed projection of the
angular momentum on the field axis, M . Thousands of phase-space points have been included
in the ensemble. These were then allowed to evolve according to the classical equations
of motion, and the analogues of the quantum averages were obtained by averaging over the
ensemble at later times. The ionization probability Pion at the end of a laser pulse was taken
to be the fraction of trajectories having positive energies, i.e. escaping the vicinity of the
atom. By analysing the dependence of Pion on the peak field of the pulse, the existence of
a classical stabilization could thus be ascertained. Recall that the classical dynamics of H
in a monochromatic plane wave is invariant under the scaling of frequency ω, electric field
amplitude E0 and energy W , according to ω ⇒ n−3ω, E0 ⇒ n−4 E0 and W ⇒ n−2W , where
n is a constant (assimilated in practice to the principal quantum number). Thereby, results for
Rydberg states can be transposed to lower states (not necessarily in parameter ranges of interest,
however), and vice versa. Hereafter we describe the NR work done; for more information on
classical studies, see also the relativistic case in section 4.1.

The first application of the method to DS was made by Grohmalicki et al [158], for
both 1D and 3D models. This was continued by the work by Gajda et al [159]. For the 1D
model potential chosen, Vs(x) = −(1 + x2)−1/2, the results for Pion , at the end of a pulse of
sufficiently large peak field and sufficiently high frequency, displayed DS and considerable
survival probability, in qualitative agreement with the quantal results by Su et al [2] (see our
figure 3). Comparatively, quite small survival probability was found for the purely Coulomb
3D case, at peak intensities of several au (the survival was somewhat better for L = 1 than for
0). This was perceived to be in contradiction with the quantum mechanical results in [123]
(pertaining, though, to different parameters), and a shortcoming of the classical approach. The
authors remarked that, by introducing a soft-core 3D Coulomb potential Vε(r) = −1/(r + ε),
where ε is of order unity, more survival could be achieved, comparable to that in the 1D case.
However, later 3D quantal calculations (see section 3.1.2) have shown that DS is indeed much
reduced in the 3D case in comparison to the 1D case, so that there is no reason to introduce
the potential Vε(r). Rzažewski et al [160] have carried out a treatment of the two-electron
problem with a 1D model along similar lines.

Ménis et al [161] studied both the 1D model potential Va(x) = −(a2 + x2)−1/2, where
a was varied, and the true 3D Coulomb potential. In the 1D case, they found high sensitivity
of Pion to the value of the smoothing parameter a, namely, less atomic survival for smaller
a. From this they concluded that soft-core Coulomb potentials were prone to be misleading.
They also confirmed the reduced degree of stability in the 3D Coulomb case as compared to
the 1D case, but cautioned against using soft-core potentials as overestimating DS.

Grobe and Law [162] studied the 1D model with potential Vs in the oscillating (KH)
frame. They confirmed the existence of DS and explained, on the basis of the trajectories
calculated, why ionization becomes classically difficult in intense fields. Bestle et al [163]
have considered the same model with a suddenly turned on pulse of amplitude E0 and duration
τp. A systematic calculation of the dependence of Pion on E0 and τp again revealed DS.

The study of Benvenuto et al, pertaining to the 3D Coulomb case, emphasized the role of
the angular momentum projection M on the field (at fixed L): case M = 0 was studied in [164],
and case M �= 0 in [165]. Their study was targeted at Rydberg microwave ionization, but the
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results are more general due to the aforementioned scaling laws. Clear-cut DS was found for
M �= 0, but very little for M = 0 (at long pulse durations) (see figure 2 of [164]). The difference
was interpreted as being due to the possibility, for M = 0, of the electron becoming close to the
nucleus at large field amplitude, and ionizing. (Recall that DS is present in the quantum case
for M = 0, see section 3.1.2, but at much shorter pulse durations than were considered here.)
In a further publication by the same authors [166], a stability diagram in the energy–frequency
plane was given, based on analytical estimates (see also Shepelyansky [167]). A criticism of
classical results by others was presented.

Some calculations have compared directly the classical distribution probability in phase
space with quantum phase-space quasiprobability distributions (such as the Wigner or Husimi
distributions), that yield information basically equivalent to that of the wavefunction � . An
example is the work by Jensen and Sundaram [168, 169], who considered the case of an
electron in the 1D potential Va defined above, driven by a monochromatic plane wave. The
classical dynamics were handled in the oscillating (KH) frame, based on the approximation
of an electron ‘periodically kicked’ by the potential, which leads to the ‘map approximation’
of the dynamics in phase space. This allowed the identification of the stability regions of the
motion at large field amplitudes (fixed points,periodic orbits etc), i.e. the existence of a classical
stability against ionization. On the other hand, the quantal calculation of Floquet states and their
Husimi distributions allowed the identification of some states strongly localized precisely near
the classical fixed points. An explanation was advanced as to why the dichotomous structure
of |�|2, found in the calculation by Su et al [2], had peaks spaced α0 apart, instead of 2α0 as
required by HFFT (α0 corresponds to the flat-top amplitude of their pulse). In a continuation
of this work, Jensen and Sundaram [170] have extended their 1D analysis to the 3D Coulomb
case, based again on the ‘map approximation’. A stability diagram in the E0, ω plane was
derived, shown in their figure 1 (see also the discussion in [166]).

Later Watson et al [171] compared the microcanonical probability density with the Wigner
quasiprobability for a 1D soft-core Coulomb model, in order to identify nonclassical effects
during the evolution of a pulse. The pulse was chosen to have ω = 1 au (a high-frequency
case), a sin2 envelope of 24 cycles duration and peak field E0 = 10 au. Their findings were
interpreted in terms of the population in dressed KH states (see equation (21)). They found
disagreement between the classical and quantum distributions for t � 12 cycles (but a signature
of stabilization was nevertheless detected), and good agreement in the later part of the pulse
(t � 12 cycles), indicating that this stage could indeed be described classically.

More recently, Chism et al [118] have compared quantum mechanical and classical DS
for a 2D model and circular polarization (see also section 3.1.1). Good correspondence was
found between the stability regions in phase space, and the rotating, ring-shaped wavepacket.

These studies have indicated that atomic stabilization can be understood, up to a point, in
classical terms, but that there are limitations. Specifically, the adiabatic pulse regime where
quantum interference plays an important role cannot be covered (see the interpretation of
QS in section 2.1.2), whereas nonadiabatic (shake-up/shake-off) manifestations of DS can.
It should be mentioned that many of the classical studies were carried out at a time when
the quantum mechanical picture was incomplete, so no proper quantitative comparison could
be made. Consequently, a comprehensive picture of the connection between classical and
quantum stabilization has yet to come.

4. Relativistic extensions

Atomic stabilization, in the QS and DS forms, was derived from NR dynamics. At the
superintense fields at which it occurs, one might wonder whether NR dynamics can give a
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trustworthy description of the phenomenon. In fact, it has been anticipated that relativity will
have an adverse effect on the survival probability of the atom, and will destroy stabilization at
some high intensity: stabilization is limited, therefore, to a window of intensities. The issue
could be fully clarified by carrying out a relativistic calculation based on the Dirac equation.
This has been precluded so far by the complexity of the numerical problem. The best one
could do quantum mechanically to date was to study relativistic approximations, and models.
The classical problem, however, has been treated fully relativistically.

Relativity comes into play in several ways: firstly, because in extremely intense fields the
electron is driven with velocities close to the speed of light (classically: variation of mass with
velocity becomes important). Secondly, the extended structure acquired by the atom due to the
large excursion of the oscillating electrons forces the breakdown of the dipole approximation
for the laser field; i.e., the propagation of the field within the atom (retardation) needs be taken
into account. The vector potential of the field A(r, t) is now a function also of r, which leads
to the appearance of the magnetic Lorentz force. Finally, relativity is needed for a consistent
description of spin effects.

The expected order of magnitude of the retardation corrections is of the ratio of the
magnetic Lorentz force to the electric force, i.e. O(v/c) = O(eE0 / mcω), where v is the
average velocity of the electron quiver motion at small field v = O(ωα0); note that the
retardation corrections scale as E0/ω. Relativistic dynamics corrections (classical variation
of mass with velocity) are of order (v/c)2. We shall be using in this section ordinary units.

4.1. Classical calculations

In the superintense fields we are concerned with,the electric force of the field is overwhelmingly
dominant with respect to the Coulomb binding force, so that the latter can be ignored for most
of the electron’s motion. It is, therefore, useful to recall some facts about the relativistic motion
of a free (unbound) electron.

To be specific, let us consider the case of a linearly polarized plane wave propagating in
the positive Oz direction, with the E and H vectors oscillating along the Ox and Oy axes,
respectively. The stationary free-electron motion is given in textbooks, e.g. [172]; see also
Sarachik and Schappert [173, section 2]. In the field of a monochromatic plane wave, an
electron with no drift velocity moves along a ‘figure eight’ trajectory in the O xz plane, with
the axis of the ‘eight’ in the direction of the electric field27, O x . The case of practical interest,
however, is that of a free electron, initially at rest, acted upon by a finite-duration laser pulse
propagating in the O z direction. In this case, the electron acquires a drift velocity in the
Oz direction, that grows from zero to a maximum value, and then decreases back to zero (see,
e.g., [173–175]). Although the electron is left at rest by the passing pulse (i.e. (δp)τ = 0,
in the notation of section 3.1), its final position is displaced in the propagation direction
(i.e. (δz)τ �= 0), the displacement being larger for a longer pulse. When dealing with an
atomic electron, the fact that (δz)τ �= 0 will have a negative impact on the possibility that it
will be recaptured by the atom at the end of the pulse (i.e. on the survival of the atom in a neutral
state). The destabilizing effect of the relativistic shift (δz)τ was pointed out by Katsouleas and
Mori [177], as a caveat on NR stabilization calculations. A similar situation also occurs for
arbitrary elliptic polarization.

Classical, fully relativistic Monte Carlo calculations were initiated before the discovery
of stabilization by Kyrala [174], and pursued years later by Keitel and Knight [175]. The

27 The ‘width’ and ‘height’ of the ‘figure eight’ (i.e. its extension in the direction of propagation and in the direction
of electric field) tend to finite values as the field increases, the limit of their ratio being 0.18 (see [172]). At smaller
intensities, the ‘figure eight’ collapses into a straight line segment along the O x axis, of length 2α0 (twice the NR
excursion).
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latter found that (for short pulses) the classical ionization probability does manifest DS at high
frequencies, such as ω = 5 au, both with and without relativity, for 10 < E0 � 100 au. For
E0 � 100 au, however, Pion starts growing monotonically to unity in both cases, the growth
in the relativistic case being considerably faster. In the NR case, the growth can be ascribed
to the fact that the pulses used did not satisfy the first of conditions (18), the one leading
to (δr)τ = 0 in NR dynamics (see also the quantal considerations in section 3.3). In the
relativistic case, as noted above, the condition (δr)τ = 0 can never be satisfied, and hence the
growth is unavoidable.

Kylstra et al [176] have carried out NR Monte Carlo simulations for a 2D model with a
soft-core Coulomb potential, with short pulses at ω = 1 and 2, to test the effects of retardation.
On the one hand, these have confirmed the existence of NR classical DS, and the inhibiting
effect of retardation on it. On the other hand, they have found good agreement when comparing
to corresponding quantal calculations (see section 4.2.2), confirming the value of classical DS
calculations.

4.2. Quantum calculations

4.2.1. Quasistationary stabilization. Relativistic HFFT. In the NR case it was possible to
define a space translation of vector α(t) (a unitary transformation), that eliminates the vector
potential A(t) explicitly from the Schrödinger equation (3) and yields its space-translated
form, equation (4). The latter is the starting point of the NR HFFT, described in section 2. The
simplicity of the result is due to the fact that A was a function of t only, which no longer holds
when retardation is included; e.g., for unidirectional propagation we have A(t − r · n/c).
For the case of a plane wave of arbitrary polarization, Krstic and Mittleman [178, 179],
have, nevertheless, derived a unitary operator U(r, t), that eliminates the corresponding
vector potential A from the Dirac equation while changing the atomic potential V (r) into
Ṽ (r, t) ≡ U V (r) U−1. The transformed equation is exact, but the difficulty with Ṽ (r, t) is
that it is an integral matrix operator. However, they have shown that in the case of a light atom,
where only NR internal momenta are involved, Ṽ (r, t) reduces to a local matrix operator.
If spin terms are neglected, this is just a multiplicative potential ṼP (r, t). ṼP (r, t) is the
relativistic extension of the NR oscillating potential V (r + α(t)). At high frequencies, the
equation obtained can be handled by the procedures of the NR HFFT.

Krstic and Mittleman have made the first step in this direction, and have derived
a relativistic high-frequency structure equation, generalizing equation (6); it contains
Ṽ (0)

P (r, α0, ω), the cycle-averaged form of ṼP(r, t). Note that Ṽ (0)
P (r, α0, ω) depends on

α0, as well as on ω; it is logarithmically singular along the relativistic path of the free classical
electron. For linear polarization, this path is the aforementioned ‘figure eight’. The structure of
the averaged potential Ṽ (0)

P (r, α0, ω) was analysed by Ermolaev [180]. The Krstic–Mittleman
structure equation has not been solved for realistic 3D cases so far, but a 1D model with a
soft, quasi-Coulomb potential was discussed by Ermolaev [180]. The ground-state energy
eigenvalue W (R)

0 (α0, ω) shows at large α0 considerable departure from its NR counterpart,
W (N R)

0 (α0). However, for reasonably large E0 (e.g. E0 < 100 au), the deviation of the
relativistic curves from W (N R)

0 (α0), given by figure 1 of [180], is quite small. No ionization rates
were calculated, and hence no information was obtained on how relativity may affect NR QS.

Soluble models. Faisal and Radożycki [181, 182], have developed a relativistically soluble
model for a ‘separable’ pseudopotential of the form V (r) = V0|φ(r)〉〈φ(r)| (a projection
operator on the unique bound state |φ(r)〉). The equation solved was the (spinless) Klein–
Gordon equation. With a circularly polarized monochromatic field, the Floquet quasienergy
of the ground state can be obtained from an integral equation (as in the corresponding NR
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case [79, 80]). This was solved at low frequencies, and QS was shown to exist under certain
circumstances.

Full Floquet calculations. Potvliege [183] has carried out an NR Floquet calculation with
retardation included for the circular state 5g (m = 4) of H (this was the initial state chosen
for the stabilization experiments described in section 5). The goal was to check for possible
departures from the dipole approximation rate calculated by Piraux and Potvliege [133]. No
departure was found in the range of up to 4 × 1014 W cm−2, covering the experiment.

4.2.2. Dynamic stabilization. As concerns DS, one has studied the effect of retardation
corrections (i.e. of the magnetic Lorentz force) on the NR dipole approximation results for
Pion . The early 3D work by Bugakov et al [184] has retained only some of the retardation
corrections. At ω = 2 au, for a Gaussian pulse envelope of τp = 5 cycles duration (as defined
by equation (20)), the retardation corrections found for peak fields E0 < 10 au were negligible
(see [184, figure 2(a)]); their result agrees at the graphical level with the NR calculations
shown in our figure 6. For E0 > 10 au, on the other hand, their NR dipole approximation
result differs drastically from figure 6. Latinne et al [127] have taken into account retardation
in three dimensions fully, using a pulse with linear turn-on (but no turn-off), and various peak
intensities. Negligible retardation corrections were found for peak fields E0 < 16 au at ω = 2,
and for E0 < 40 au at ω = 5 au.

More recently,Kylstra et al [176] and Vázquez de Aldana et al [185] have fully included re-
tardation in an NR 2D model calculation with a soft-Coulomb potential, and trapezoidal pulses
of 12 cycles duration. The results for Pion , calculated with or without retardation, start devi-
ating from each other abruptly at about E0 = 9 for ω = 1, but for ω = 2 they are still in good
agreement at E0 = 18 au, the maximum field strength considered (see figure 1 of [176]). Thus,
a large part of the NR DS regime lies well within the range of intensities for which retardation
(and other relativistic) corrections are negligible. In [185], also the effects of the pulse duration
on the limitations of the dipole result were analysed. Moreover, the possibility was explored
that, by placing the atom in a standing wave at a node of the magnetic field, the inhibiting effect
of retardation on DS might be reduced, but this has not proven to be the case. Rather similar
results on the role of retardation on DS have been obtained by Ryabikin and Sergeev [186, 187].
Some of the results in these papers were assessed by Joachain and Kylstra [188].

Taı̈eb et al [189] have considered a relativistic 1D model with soft-core Coulomb potential,
brought into the stabilization regime by high-frequency superintense radiation. By applying a
second field, of relatively low frequency and intensity,and by comparing the NR and relativistic
ATI spectra, notable signatures of relativity were found.

5. Experiments

Two independent, state-of-the-art experiments have been carried out, stimulated by the
theoretical work on QS of low-lying Rydberg states [39]. The most favourable candidate
under the prevalent experimental circumstances was considered to be the Ne atom, and the
circular state 5g (n = 5, l = m = 4) was selected as the test case. The first experiment, by
de Boer et al [3], involved two stages: the preparation of the initial Rydberg state, and the
detection of its ionization by an intense laser field of (relatively) high frequency. In the second
experiment, by van Druten et al [4], a third stage was added to monitor the population left in
the Rydberg state. The second experiment confirmed the first one; we shall present the latter
in the following.

The ionized electrons were detected with the help of the ‘magnetic bottle’ electron
spectrometer. The apparatus consists of an ionization chamber connected to a flight tube,
having an inhomogeneous magnetic field applied along its axis. The field is considerably
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stronger at the laser focus than in the flight tube, with the effect that the ionized electron
trajectories are parallelized to the axis of the flight tube and guided towards a multi-channel
plate detector placed at its end, which energy-analyses them according to their time of flight.

The three stages of the experiment used different laser pulses. These were shone
successively into the ionization chamber filled with Ne, in a direction perpendicular to the axis
of the flight tube (i.e. to the direction of the magnetic field). The first pulse, the ‘preparation
pulse’, consisted of intense circularly polarized UV light (ω1 = 4.34 eV, pulse duration 1 ps,
I ≈ 200 TW cm−2). Its role was to populate the 5g state. The second, the ‘main pulse’, was the
one driving the ionization to be stabilized. It consisted of red light (ω2 = 2.0 eV = 0.073 au),
was of short duration (90 fs) and intense (I � 230 TW cm−2), and was linearly polarized. It
could be delayed by a variable time τd with respect to the preparation pulse. The high-frequency
condition (9) is relatively well satisfied for the ω2 photons and the m = 4 manifold, to which
the initial states belonged, whose largest binding energy is W (4) = 0.02 au: ω2 > W (4) (see
section 2.1.2). Finally, the ‘probe pulse’ consisted of green light (ω3 = 2.33 eV) of low
intensity (I � 10 GW cm−2). Its duration was long (5 ns) and it was weakly focused and had
sufficiently high fluence to ionize all the population left in the 5g and neighbouring states. It
was delayed by 14 ns with respect to the preparation pulse. Its role was to probe the population
left in the 5g state after applying the first two pulses.

The excited (2p5)5g state was produced from the ground state 2p6 of Ne by the absorption
of five photons from the preparation pulse. In the one-electron approximation, this corresponds
to a transition from the (2p, ml = −1) orbital to (5g, ml = 4). The magnetic quantum numbers
are referred to the axis of propagation of the preparation beam. At vanishing field, five photons
are barely sufficient to access the continuum. However, there is a large increase in the ionization
potential of the ground state during the turn-on of the field (primarily due to the quiver energy
gained), which means that the ground-state level is shifted downwards with respect to the
continuum, whereas the Rydberg states remain close to it in energy. Consequently, the location
of the five-photon resonance from the ground state sweeps through the (n, g)-Rydberg series
during the turn-on. Population is transferred to these states in the process (but also to the
continuum), and a large fraction of it survives the preparation pulse, so that it can be used as
initial population for the main pulse. However, along with the 5g states, the 6g, 7g etc states are
also populated to a lesser extent. It was extremely difficult to produce sufficient 5g population,
so that the optimization of this stage was essential for the success of the experiment.

In high-intensity experiments, there is always a spatial distribution of peak intensities in the
focal region, which substantially complicates the interpretation of the results. This difficulty
was circumvented by arranging that the focal region of the preparation pulse (containing the
excited atoms) be much tighter than that of the overlapping focal region of the main pulse.
Moreover, by arranging that the focal region of the preparation pulse be at the centre of the
main focal region, excited atoms were produced only in that part of the latter which contains
the peak intensities. On the other hand, the fact that the preparation- and main-pulse beams
were parallel created a problem: the axis of quantization of the magnetic states prepared by the
first beam was perpendicular to the direction of linear polarization of the main beam (chosen
to be also perpendicular to the magnetic field), instead of being parallel to it as required by
the theory. A remarkably ingenious solution was give to this problem, by making use of the
magnetic field of the electron spectrometer, which is perpendicular to the (parallel) beams. In
this field, the m = 4 excited atoms undergo Larmor precession, which rotates their axis of
quantization around the direction of the magnetic field, allowing it to become perpendicular to
the beam direction after a quarter of a Larmor period. By sending in the main pulse with this
time delay (τd = 20 ps), the axis of quantization of the atoms will rotate and become parallel
to the direction of polarization of the main pulse, as needed.
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Figure 10. Adiabatic stabilization experiment by van Druten et al [4] on the Rydberg states of
Ne. The solid curve shows the photoelectron spectrum after the three laser pulses (preparation,
main and probe) have been applied (see text). The expected energies of electrons ionized from the
(2p)5ng states by the main and probe pulses are marked.

A typical electron spectrum for the case where all three pulses were applied successively
is shown in figure 10 (solid curve). The peaks represent one-photon absorptions from the
different n, g states populated by the preparation pulse. There are two superposed series of
peaks: one due to the main pulse, the other to the probe pulse (as indicated). The energy
difference of peaks corresponding to the same state is ω3 − ω2 = 0.33 eV. The figure also
contains a dashed curve, representing the spectrum with the probe laser off, for τd = −5 ps.
(Negative τd means that the main pulse precedes the preparation pulse.) Thus, the dashed curve
represents the electron yield from the ground state due to the main and preparation pulses,
i.e. gives the background signal under the peaks of the main pulse in figure 10. By subtracting
the dashed curve from the full curve under the main photon peaks in figure 10, one could
determine the fraction of the (2p)55g population that has ionized. Figure 10 also contains a
dotted curve, giving the spectrum with the probe laser on, but with τd = −5 ps. This yields
the total population generated in the (2p)55g state (all of which is ionized), in the presence of
the background from the ground state due to the main and preparation pulses. By subtracting
the full curve from the dotted one under the probe-photon peaks, one could directly determine
the fraction of the (2p)55g population that has survived the main pulse.

The fractions of the (2p)55g surviving and ionized populations are shown in figure 11, with
an error bar on the results. Note first that, within the error shown, the two fractions add to unity,
indicating that there are no other significant decay channels than one-photon ionization. This
agrees with the theoretical prediction made in section 2.1.2, regarding the dominance of one-
photon ionization at high frequencies. Next, at peak intensities of the main pulse higher than
approximately 60 TW cm−2, practically no ionization is observed. The surviving population
stabilizes at about 70% of its initial value, and conversely, some 30% gets ionized. These
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Figure 11. Stabilization experiment by van Druten et al [4]. Measured fraction of ionized (open
circles), and surviving (solid circles) populations in the (2p)55g state of Ne following exposure
to the main pulse (inducing stabilization), versus main-pulse intensity. Drawn curves represent
populations according to LOPT (‘Fermi’s golden rule’): ionized fraction (solid curve), surviving
fraction (dashed curve).

results disagree with LOPT, represented in figure 11 by the drawn curves, and are a clear-cut
indication of DS.

A quantitative theoretical analysis of the experiment was made by Piraux and
Potvliege [133]. They evaluated the ionization probability at the end of the pulse under the
conditions of the experiment, both in the adiabatic approximation (calculating � from Floquet
theory and using equation (24)) and dynamically, by integrating TDSE. Several pulse shapes
were explored (sin2, sech). Identical results for Pion were found for the same pulse shape with
both methods, showing the fully adiabatic character of the atomic evolution considered. DS
was confirmed. The results for Pion calculated with the sech pulse were in fair quantitative
agreement with experiment (see figure 3 of [133]). As mentioned already, in order to check the
validity of the previous dipole approximation results for �, Potvliege [183] has carried out a
Floquet calculation fully including retardation; no difference was found up to 4 × 1014 W cm−2

(the range of experimental interest).
The above experiment was aimed at determining yields (i.e. Pion) and was conducted under

adiabatic conditions of atomic evolution; under the circumstances, DS is a manifestation of the
underlying existence of QS (see equation (24)). As a matter of conceptual interest, we mention
that one can devise ways for ascertaining the existence of QS directly. One such possibility
would be to apply an intense adiabatic pulse with a flat top, and to monitor the exponential
decay of an initial atomic population during the flat top. Whereas this procedure has often been
applied theoretically to obtain � from wavepacket calculations (e.g. [123, 135]), it could be
implemented experimentally too. For example, by applying a pulse of the kind mentioned, the
decay of the initial state of the population could be monitored by a low-intensity,auxiliary pulse,
that fully depletes the remaining population, and is triggered at successive instants. Although
not easy, the experiment should be feasible (private communication from H G Muller).
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6. Conclusion and perspectives

From the work reviewed, one may conclude that the decade of research on superintense-field
stabilization has firmly established the concept theoretically and experimentally, and that its
physics has been by and large understood. Notwithstanding, challenging open problems exist.
We give some examples here, starting with experimental ones.

Ground-state DS for atoms with large ionization potentials (such as H, noble gas atoms)
has been identified early on as an important goal of research, both for its fundamental interest
and for its potential applications. Now theoretically under control for one-active-electron
systems, DS was until very recently completely out of experimental reach, for lack of adequate
lasers. Promising prospects have opened up with the advent of intense high-frequency light
sources. For example, VUV-FELs have been built and are now in test operation (HASYLAB at
DESY), or under construction (BNL). Photon energies in excess of 200 eV, at high intensities
(1018 W cm−2 and up), should soon become available at HASYLAB. Technical studies have
indicated that the pulse lengths could be brought down to some 30 fs by advanced manipulation
of the electron beam, but they would still not be at the femtosecond level required for ground-
state DS. Nevertheless, by seeding with XUV radiation and use of chirped pulse amplification,
it should be possible to further reduce the pulse length and bring it down into the desired
range. A different prospect is the use of attosecond pulses recently produced by high harmonic
generation. Techniques are now being developed for their handling; a tight focusing can lead
to some 100 au of intensity, at several au of photon energy. In both cases, the DS experiment
would need to be state of the art.

Short-pulse DS. The experiments so far have been done with pulses in the adiabatic regime.
Now that very short pulses (FWHM of several cycles) have become available, it is of interest
to explore experimentally the other mechanisms responsible for DS, shake-up and shake-off.
This could be also done with low-frequency laser sources in the case of excited states of H, or
ground states of atoms with small ionization potentials such as alkalis.

Observation of QS. The study of Pion is an indirect way to confirm QS. A direct possibility
would be to monitor the exponential decay of some initial atomic population during the flat
top of an intense adiabatic pulse. Various monitoring schemes can be imagined. While not
easy, the experiment should be feasible.

Atomic distortion. Stabilization is coupled to extreme (polarization-dependent) atomic
distortion, a fact well documented theoretically in the high-frequency regime. The possibility
arises, therefore, that atomic structure could be (transiently) tailored for use in other (adequately
synchronized) experiments.

Exotic systems have been predicted, like hydrogen multiple-negative ions (a proton binds
more than two electrons, not possible in the field-free limit). Theoretically predicted at high
frequencies and intensities, such structures are in the DS regime, and already relatively stable at
their appearance. H2− (a proton plus three electrons) is in principle within experimental reach.

Other problems require further investigation of their theoretical basis. Examples follow.
Role of frequency. QS and DS have been studied theoretically primarily in the high-

frequency regime. Little is known about the possibility and conditions of occurrence of
stabilization at low frequencies. Moreover, it is known that at low frequencies ‘light-induced
atomic states’ (LIS) appear at high intensities. These are, from the start, in the high-
frequency regime and therefore undergo QS. Their excitation might allow for a new avenue of
manifestation of DS.

Pulse shape effects. It has been recognized in theoretical 1D studies that the shape of
the pulse envelope is of considerable consequence for DS and atomic survival. Indeed, it was
shown that the atom evolves towards high intensities along so-called ‘diabatic Floquet paths’,
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consisting of sequences of Floquet states. The possibility thus appears of steering the evolution
along diabatic paths that have maximum atomic survival, by adequate pulse shaping (‘quantum
control’).

Relativistic effects. Their theoretical study has been stimulated by the superintense fields
available at low frequencies, and has started to reveal new exotic behaviour. Computational
limitations are still a handicap here. The extension of the stabilization ‘window’ (i.e. of the
intensity range in which NR DS remains valid) is of great interest.

The problems listed above refer to the case of one-active-electron atoms, but some of
them can be extended to two-electron atoms (H− or He), or simple molecules (H+

2, H2 etc).
Because of the increased number of degrees of freedom, new problems appear. Thus, what is
the effect of electron correlation on the single-active-electron results for stabilization (QS and
DS)? Does DS exist beyond the one-active-electron approximation? In the context of several
electrons, the notion of ‘high frequency’ becomes uncertain: to which of the several ionization
potentials should ω be compared? Moreover, more complex forms of stabilization have been
suggested.

Many more problems are open; superintense-field stabilization has rewarding research to
offer in the years to come.
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[50] Dörr M, Potvliege R M, Proulx D and Shakeshaft R 1991 Phys. Rev. A 43 3729
[51] Wiedemann H 1994 Phys. Rev. A 50 2769
[52] Fearnside A S, Potvliege R M and Shakeshaft R 1995 Phys. Rev. A 51 1471
[53] Wells J C, Simbotin I and Gavrila M 1998 Phys. Rev. Lett. 80 3479

Wells J C, Simbotin I and Gavrila M 1999 Phys. Rev. Lett. 82 665
[54] Lefebvre R, Stern B and Atabek O 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3271
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[139] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292

1689
[140] Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U,

Drescher M and Krausz F 2001 Nature 414 509
[141] Muller H G 1999 Laser Phys. 9 138

Muller H G 1999 Phys. Rev. Lett. 83 3158
[142] Boca M, Muller H G and Gavrila M, in preparation
[143] Barash D, Orel A E and Baer R 1999 Phys. Rev. A 61 013402
[144] Su Q and Eberly J H 1991 Phys. Rev. A 43 2474
[145] Law C K, Su Q and Eberly J H 1991 Phys. Rev. A 44 7844
[146] Vivirito R M A and Knight P L 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4357
[147] Reed V C, Knight P L and Burnett K 1991 Phys. Rev. Lett. 67 1415
[148] Mittleman M H and Tip A 1984 J. Phys. B: At. Mol. Phys. 17 571
[149] Schiff L 1968 Quantum Mechanics 3rd edn (New York: McGraw-Hill) ch 8 section 35
[150] Galindo A and Pascual P 1991 Quantum Mechanics (Berlin: Springer) ch 11
[151] Dörr M, Kylstra N J and Potvliege R M 2001 Laser Phys. 11 250

Dörr M, Kylstra N J and Potvliege R M 2001 Super-Intense Laser–Atom Physics (Proc. SILAP VI) ed B Piraux
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